64,780 research outputs found

    Signatures of Emerging Subsurface Structures in Acoustic Power Maps

    Full text link
    We show that under certain conditions, subsurface structures in the solar interior can alter the average acoustic power observed at the photosphere above them. By using numerical simulations of wave propagation, we show that this effect is large enough for it to be potentially used for detecting emerging active regions before they appear on the surface. In our simulations, simplified subsurface structures are modeled as regions with enhanced or reduced acoustic wave speed. We investigate the dependence of the acoustic power above a subsurface region on the sign, depth, and strength of the wave speed perturbation. Observations from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) prior and during the emergence of NOAA active region 10488 are used to test the use of acoustic power as a potential precursor of magnetic flux emergence.Comment: 7 pages, 5 figures, accepted for publication in Solar Physics on 21 March 201

    Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3

    Full text link
    Carrier and phonon dynamics in Bi2Se3 crystals are studied by a spatially resolved ultrafast pump-probe technique. Pronounced oscillations in differential reflection are observed with two distinct frequencies, and are attributed to coherent optical and acoustic phonons, respectively. The rising time of the signal indicates that the thermalization and energy relaxation of hot carriers are both sub-ps in this material. We found that the thermalization and relaxation time decreases with the carrier density. The expansion of the differential reflection profile allows us to estimate an ambipolar carrier diffusion coefficient on the order of 500 square centimeters per second. A long-term slow expansion of the profile shows a thermal diffusion coefficient of 1.2 square centimeters per second.Comment: 8 pages, 6 figure

    An inner ring and the micro lensing toward the Bulge

    Get PDF
    All current Bulge-Disk models for the inner Galaxy fall short of reproducing self-consistently the observed micro-lensing optical depth by a factor of two (>2σ> 2\sigma). We show that the least mass-consuming way to increase the optical depth is to add density roughly half-way the observer and the highest micro-lensing-source density. We present evidence for the existence of such a density structure in the Galaxy: an inner ring, a standard feature of barred galaxies. Judging from data on similar rings in external galaxies, an inner ring can contribute more than 50% of a pure Bulge-Disk model to the micro-lensing optical depth. We may thus eliminate the need for a small viewing angle of the Bar. The influence of an inner ring on the event-duration distribution, for realistic viewing angles, would be to increase the fraction of long-duration events toward Baade's window. The longest events are expected toward the negative-longitude tangent point at ℓ∼\ell\sim -22\degr . A properly sampled event-duration distribution toward this tangent point would provide essential information about viewing angle and elongation of the over-all density distribution in the inner Galaxy.Comment: 9 pages, 7(15) figs, LaTeX, AJ (accepted

    Gravitational Lens Statistics for Generalized NFW Profiles: Parameter Degeneracy and Implications for Self-Interacting Cold Dark Matter

    Full text link
    Strong lensing is a powerful probe of the distribution of matter in the cores of clusters of galaxies. Recent studies suggest that the cold dark matter model predicts cores that are denser than those observed in galaxies, groups and clusters. One possible resolution of the discrepancy is that the dark matter has strong interactions (SIDM), which leads to lower central densities. A generalized form of the Navarro, Frenk and White profile (Zhao profile) may be used to describe these halos. In this paper we examine gravitational lensing statistics for this class of model. The optical depth to multiple imaging is a very sensitive function of the profile parameters in the range of interest for SIDM halos around clusters of galaxies. Less concentrated profiles, which result from larger self-interaction cross-sections, can produce many fewer lensed pairs. Lensing statistics provide a powerful test for SIDM. More realistic and observationally oriented calculations remain to be done, however larger self-interaction cross-sections may well be ruled out by the very existence of strong lenses on galaxy cluster scales. The inclusion of centrally dominant cluster galaxies should boost the cross-section to multiple imaging. However our preliminary calculations suggest that the additional multiple imaging rate is small with respect to the differences in multiple imaging rate for different halo profiles. In future statistical studies, it will be important to properly account for the scatter among halo profiles since the optical depth to multiple imaging is dominated by the most concentrated members of a cluster population.Comment: 58 pages, 14 figures. To be published in ApJ. Revised version includes discussion of magnification bias and the effect of a centrally dominant galax

    Simple algebras of Weyl type

    Full text link
    Over a field FF of any characteristic, for a commutative associative algebra AA with an identity element and for the polynomial algebra F[D]F[D] of a commutative derivation subalgebra DD of AA, the associative and the Lie algebras of Weyl type on the same vector space A[D]=A⊗F[D]A[D]=A\otimes F[D] are defined. It is proved that A[D]A[D], as a Lie algebra (modular its center) or as an associative algebra, is simple if and only if AA is DD-simple and A[D]A[D] acts faithfully on AA. Thus a lot of simple algebras are obtained.Comment: 9 pages, Late
    • …
    corecore