40,023 research outputs found
Massless Scalar Field Propagator in a Quantized Space-Time
We consider in detail the analytic behaviour of the non-interacting massless
scalar field two-point function in H.S. Snyder's discretized non-commuting
spacetime. The propagator we find is purely real on the Euclidean side of the
complex plane and goes like as from either the
Euclidean or Minkowski side. The real part of the propagator goes smoothly to
zero as increases to the discretization scale and remains zero
for . This behaviour is consistent with the termination of
single-particle propagation on the ultraviolet side of the discretization
scale. The imaginary part of the propagator, consistent with a
multiparticle-production branch discontinuity, is finite and continuous on the
Minkowski side, slowly falling to zero when . Finally, we
argue that the spectral function for the multiparticle states appears to
saturate as probes just beyond the discretization scale. We
speculate on the cosmological consequences of such a spectral function.Comment: 6 pages, 1 eps figure embedded in manuscrip
Detection of high k turbulence using two dimensional phase contrast imaging on LHD
High k turbulence, up to 30 cm(-1), can be measured using the two dimensional COâ‚‚ laser phase contrast imaging system on LHD. Recent hardware improvements and experimental results are presented. Precise control over the lens positions in the detection system is necessary because of the short depth of focus for high k modes. Remote controllable motors to move optical elements were installed, which, combined with measurements of the response to ultrasound injection, allowed experimental verification and shot-to-shot adjustment of the object plane. Strong high k signals are observed within the first 100-200 ms after the initial electron cyclotron heating (ECH) breakdown, in agreement with gyrotron scattering. During later times in the discharge, the entire k spectrum shifts to lower values (although the total amplitude does not change significantly), and the weaker high k signals are obscured by leakage of low k components at low frequency, and detector noise, at high frequency
Nucleosynthesis in Core-Collapse Supernovae and GRB--Metal-Poor Star Connection
We review the nucleosynthesis yields of core-collapse supernovae (SNe) for
various stellar masses, explosion energies, and metallicities. Comparison with
the abundance patterns of metal-poor stars provides excellent opportunities to
test the explosion models and their nucleosynthesis. We show that the abundance
patterns of extremely metal-poor (EMP) stars, e.g., the excess of C, Co, Zn
relative to Fe, are in better agreement with the yields of hyper-energetic
explosions (Hypernovae, HNe) rather than normal supernovae.
We note that the variation of the abundance patterns of EMP stars are related
to the diversity of the Supernova-GRB connection. We summarize the diverse
properties of (1) GRB-SNe, (2) Non-GRB HNe/SNe, (3) XRF-SN, and (4) Non-SN GRB.
In particular, the Non-SN GRBs (dark hypernovae) have been predicted in order
to explain the origin of C-rich EMP stars. We show that these variations and
the connection can be modeled in a unified manner with the explosions induced
by relativistic jets. Finally, we examine whether the most luminous supernova
2006gy can be consistently explained with the pair-instability supernova model.Comment: 15 pages, 9 figures. To appear in "Supernova 1987A: 20 Years After:
Supernovae and Gamma-Ray Bursters", eds. S. Immler, K. Weiler, & R. McCray
(American Institute of Physics) (2007
The adiabatic evolution of orbital parameters in the Kerr spacetime
We investigate the adiabatic orbital evolution of a point particle in the
Kerr spacetime due to the emission of gravitational waves. In the case that the
timescale of the orbital evolution is enough smaller than the typical timescale
of orbits, the evolution of orbits is characterized by the change rates of
three constants of motion, the energy , the azimuthal angular momentum ,
and the Carter constant . For and , we can evaluate their change
rates from the fluxes of the energy and the angular momentum at infinity and on
the event horizon according to the balance argument. On the other hand, for the
Carter constant, we cannot use the balance argument because we do not know the
conserved current associated with it. %and the corresponding conservation law.
Recently, Mino proposed a new method of evaluating the averaged change rate of
the Carter constant by using the radiative field. In our previous paper we
developed a simplified scheme for practical evaluation of the evolution of the
Carter constant based on the Mino's proposal. In this paper we describe our
scheme in more detail, and derive explicit analytic formulae for the change
rates of the energy, the angular momentum and the Carter constant.Comment: 34 pages, no figur
Non-Universal Critical Behaviour of Two-Dimensional Ising Systems
Two conditions are derived for Ising models to show non-universal critical
behaviour, namely conditions concerning 1) logarithmic singularity of the
specific heat and 2) degeneracy of the ground state. These conditions are
satisfied with the eight-vertex model, the Ashkin-Teller model, some Ising
models with short- or long-range interactions and even Ising systems without
the translational or the rotational invariance.Comment: 17 page
The Connection between Gamma-Ray Bursts and Extremely Metal-Poor Stars as Nucleosynthetic Probes of the Early Universe
The connection between the long GRBs and Type Ic Supernovae (SNe) has
revealed the interesting diversity: (i) GRB-SNe, (ii) Non-GRB Hypernovae (HNe),
(iii) X-Ray Flash (XRF)-SNe, and (iv) Non-SN GRBs (or dark HNe). We show that
nucleosynthetic properties found in the above diversity are connected to the
variation of the abundance patterns of extremely-metal-poor (EMP) stars, such
as the excess of C, Co, Zn relative to Fe. We explain such a connection in a
unified manner as nucleosynthesis of hyper-aspherical (jet-induced) explosions
Pop III core-collapse SNe. We show that (1) the explosions with large energy
deposition rate, , are observed as GRB-HNe and their yields
can explain the abundances of normal EMP stars, and (2) the explosions with
small are observed as GRBs without bright SNe and can be
responsible for the formation of the C-rich EMP (CEMP) and the hyper metal-poor
(HMP) stars. We thus propose that GRB-HNe and the Non-SN GRBs (dark HNe) belong
to a continuous series of BH-forming stellar deaths with the relativistic jets
of different .Comment: 8 pages, 6 figures. To appear in "Massive Stars as Cosmic Engines",
Proceedings of IAU Symposium 250 (December 2007, Kauai), eds. F. Bresolin,
P.A. Crowther, & J. Puls (Cambridge Univ. Press
The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of A Strongly Magnetized Neutron Star
Late phase nebular spectra and photometry of Type Ib Supernova (SN) 2005bf
taken by the Subaru telescope at ~ 270 and ~ 310 days since the explosion are
presented. Emission lines ([OI]6300, 6363, [CaII]7291, 7324, [FeII]7155) show
the blueshift of ~ 1,500 - 2,000 km s-1. The [OI] doublet shows a doubly-peaked
profile. The line luminosities can be interpreted as coming from a blob or jet
containing only ~ 0.1 - 0.4 Msun, in which ~ 0.02 - 0.06 Msun is 56Ni
synthesized at the explosion. To explain the blueshift, the blob should either
be of unipolar moving at the center-of-mass velocity v ~ 2,000 - 5,000 km s-1,
or suffer from self-absorption within the ejecta as seen in SN 1990I. In both
interpretations, the low-mass blob component dominates the optical output both
at the first peak (~ 20 days) and at the late phase (~ 300 days). The low
luminosity at the late phase (the absolute R magnitude M_R ~ -10.2 mag at ~ 270
days) sets the upper limit for the mass of 56Ni < ~ 0.08 Msun, which is in
contradiction to the value necessary to explain the second, main peak
luminosity (M_R ~ -18.3 mag at ~ 40 days). Encountered by this difficulty in
the 56Ni heating model, we suggest an alternative scenario in which the heating
source is a newly born, strongly magnetized neutron star (a magnetar) with the
surface magnetic field Bmag ~ 10^{14-15} gauss and the initial spin period P0 ~
10 ms. Then, SN 2005bf could be a link between normal SNe Ib/c and an X-Ray
Flash associated SN 2006aj, connected in terms of Bmag and/or P0.Comment: 16 pages, 12 figures. Accepted by the Astrophysical Journa
- …