31,980 research outputs found

    Human comfort in relation to sinusoidal vibration

    Get PDF
    An investigation was made to assess the overall subjective comfort levels to sinusoidal excitations over the range 1 to 19 Hz using a two axis electrohydraulic vibration simulator. Exposure durations of 16 minutes, 25 minutes, 1 hour, and 2.5 hours have been considered. Subjects were not exposed over such durations, but were instructed to estimate the overall comfort levels preferred had they been constantly subjected to vibration over such durations

    Distributed Compressive CSIT Estimation and Feedback for FDD Multi-user Massive MIMO Systems

    Full text link
    To fully utilize the spatial multiplexing gains or array gains of massive MIMO, the channel state information must be obtained at the transmitter side (CSIT). However, conventional CSIT estimation approaches are not suitable for FDD massive MIMO systems because of the overwhelming training and feedback overhead. In this paper, we consider multi-user massive MIMO systems and deploy the compressive sensing (CS) technique to reduce the training as well as the feedback overhead in the CSIT estimation. The multi-user massive MIMO systems exhibits a hidden joint sparsity structure in the user channel matrices due to the shared local scatterers in the physical propagation environment. As such, instead of naively applying the conventional CS to the CSIT estimation, we propose a distributed compressive CSIT estimation scheme so that the compressed measurements are observed at the users locally, while the CSIT recovery is performed at the base station jointly. A joint orthogonal matching pursuit recovery algorithm is proposed to perform the CSIT recovery, with the capability of exploiting the hidden joint sparsity in the user channel matrices. We analyze the obtained CSIT quality in terms of the normalized mean absolute error, and through the closed-form expressions, we obtain simple insights into how the joint channel sparsity can be exploited to improve the CSIT recovery performance.Comment: 16 double-column pages, accepted for publication in IEEE Transactions on Signal Processin

    Improved source of infrared radiation for spectroscopy

    Get PDF
    Radiation from a crimped V-groove in the electrically heated metallic element of a high-resolution infrared spectrometer is more intense than that from plane areas adjacent to the element. Radiation from the vee and the flat was compared by alternately focusing on the entrance slit of a spectrograph

    Limited Feedback Design for Interference Alignment on MIMO Interference Networks with Heterogeneous Path Loss and Spatial Correlations

    Full text link
    Interference alignment is degree of freedom optimal in K -user MIMO interference channels and many previous works have studied the transceiver designs. However, these works predominantly focus on networks with perfect channel state information at the transmitters and symmetrical interference topology. In this paper, we consider a limited feedback system with heterogeneous path loss and spatial correlations, and investigate how the dynamics of the interference topology can be exploited to improve the feedback efficiency. We propose a novel spatial codebook design, and perform dynamic quantization via bit allocations to adapt to the asymmetry of the interference topology. We bound the system throughput under the proposed dynamic scheme in terms of the transmit SNR, feedback bits and the interference topology parameters. It is shown that when the number of feedback bits scales with SNR as C_{s}\cdot\log\textrm{SNR}, the sum degrees of freedom of the network are preserved. Moreover, the value of scaling coefficient C_{s} can be significantly reduced in networks with asymmetric interference topology.Comment: 30 pages, 6 figures, accepted by IEEE transactions on signal processing in Feb. 201

    CSI Feedback Reduction for MIMO Interference Alignment

    Full text link
    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. Most of the existing IA designs require full channel state information (CSI) at the transmitters, which induces a huge CSI signaling cost. Hence it is desirable to improve the feedback efficiency for IA and in this paper, we propose a novel IA scheme with a significantly reduced CSI feedback. To quantify the CSI feedback cost, we introduce a novel metric, namely the feedback dimension. This metric serves as a first-order measurement of CSI feedback overhead. Due to the partial CSI feedback constraint, conventional IA schemes can not be applied and hence, we develop a novel IA precoder / decorrelator design and establish new IA feasibility conditions. Via dynamic feedback profile design, the proposed IA scheme can also achieve a flexible tradeoff between the degree of freedom (DoF) requirements for data streams, the antenna resources and the CSI feedback cost. We show by analysis and simulations that the proposed scheme achieves substantial reductions of CSI feedback overhead under the same DoF requirement in MIMO interference networks.Comment: 30 pages, 7 figures, accepted for publication by IEEE transactions on signal processing in June, 201

    Mean squared error of empirical predictor

    Full text link
    The term ``empirical predictor'' refers to a two-stage predictor of a linear combination of fixed and random effects. In the first stage, a predictor is obtained but it involves unknown parameters; thus, in the second stage, the unknown parameters are replaced by their estimators. In this paper, we consider mean squared errors (MSE) of empirical predictors under a general setup, where ML or REML estimators are used for the second stage. We obtain second-order approximation to the MSE as well as an estimator of the MSE correct to the same order. The general results are applied to mixed linear models to obtain a second-order approximation to the MSE of the empirical best linear unbiased predictor (EBLUP) of a linear mixed effect and an estimator of the MSE of EBLUP whose bias is correct to second order. The general mixed linear model includes the mixed ANOVA model and the longitudinal model as special cases

    Small area estimation of general parameters with application to poverty indicators: A hierarchical Bayes approach

    Full text link
    Poverty maps are used to aid important political decisions such as allocation of development funds by governments and international organizations. Those decisions should be based on the most accurate poverty figures. However, often reliable poverty figures are not available at fine geographical levels or for particular risk population subgroups due to the sample size limitation of current national surveys. These surveys cannot cover adequately all the desired areas or population subgroups and, therefore, models relating the different areas are needed to 'borrow strength" from area to area. In particular, the Spanish Survey on Income and Living Conditions (SILC) produces national poverty estimates but cannot provide poverty estimates by Spanish provinces due to the poor precision of direct estimates, which use only the province specific data. It also raises the ethical question of whether poverty is more severe for women than for men in a given province. We develop a hierarchical Bayes (HB) approach for poverty mapping in Spanish provinces by gender that overcomes the small province sample size problem of the SILC. The proposed approach has a wide scope of application because it can be used to estimate general nonlinear parameters. We use a Bayesian version of the nested error regression model in which Markov chain Monte Carlo procedures and the convergence monitoring therein are avoided. A simulation study reveals good frequentist properties of the HB approach. The resulting poverty maps indicate that poverty, both in frequency and intensity, is localized mostly in the southern and western provinces and it is more acute for women than for men in most of the provinces.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS702 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore