4,434 research outputs found

    Loop algorithm for Heisenberg models with biquadratic interaction and phase transitions in two dimensions

    Full text link
    We present a new algorithm for quantum Monte Carlo simulation based on global updating with loops. While various theoretical predictions are confirmed in one dimension, we find, for S=1 systems on a square lattice with an antiferromagnetic biquadratic interaction, that the intermediate phase between the antiferromagnetic and the ferromagnetic phases is disordered and that the two phase transitions are both of the first order in contrast to the one-dimensional case. It is strongly suggested that the transition points coincide those at which the algorithm changes qualitatively.Comment: 4 pages including 4 figures, to appear in JPS

    A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways

    Get PDF
    Sustainable development objectives surrounding water and energy are interdependent, and yet the associated performance metrics are often distinct. Regional planners tasked with designing future supply systems therefore require multi-criteria analysis methods and tools to determine a suitable combination of technologies and scale of investments. Previous research focused on optimizing system development strategy with respect to a single design objective, leading to potentially negative outcomes for other important sustainability metrics. This paper addresses this limitation, and presents a flexible multi-criteria model analysis framework that is applicable to long-term energy and water supply planning at national or regional scales in an interactive setup with decision-makers. The framework incorporates a linear systems-engineering model of the coupled supply technologies and inter-provincial transmission networks. The multi-criteria analysis approach enables the specification of diverse decision-making preferences for disparate criteria, and leads to quantitative understanding of trade-offs between the resulting criteria values of the corresponding Pareto-optimal solutions. A case study of the water-stressed nation of Saudi Arabia explores preferences combining aspiration and reservation levels in terms of cost, water sustainability and electricity sector CO2 emissions. The analysis reveals a suite of trade-off solutions, in which potential integrated water-energy system configurations remain relatively ambitious from both an economic and environmental perspective. The results highlight the importance of identifying suitable tradeoffs between water and energy sustainability objectives during the formulation of coupled transformation strategies

    A polychromatic 'greenbeard' locus determines patterns of cooperation in a social amoeba

    Get PDF
    Cheaters disrupt cooperation by reaping the benefits without paying their fair share of associated costs. Cheater impact can be diminished if cooperators display a tag (‘greenbeard’) and recognise and preferentially direct cooperation towards other tag carriers. Despite its popular appeal, the feasibility of such greenbeards has been questioned because the complex patterns of partner-specific cooperative behaviours seen in nature require greenbeards to come in different colours. Here we show that a locus (‘Tgr’) of a social amoeba represents a polychromatic greenbeard. Patterns of natural Tgr locus sequence polymorphisms predict partner-specific patterns of cooperation by underlying variation in partner-specific protein–protein binding strength and recognition specificity. Finally, Tgr locus polymorphisms increase fitness because they help avoid potential costs of cooperating with incompatible partners. These results suggest that a polychromatic greenbeard can provide a key mechanism for the evolutionary maintenance of cooperation

    'It's always difficult when it's family. . . whereas when you're talking to a therapist. . .': Parents' views of cognitive-behaviour therapy for depressed adolescents

    Get PDF
    BACKGROUND: Parents are key to helping their adolescent child access psychological therapy for mental health problems such as depression. However, little is known about how parents experience their child's psychological therapy. We aimed to explore parents' experiences of their adolescent child's cognitive behaviour therapy for depression. METHOD: We applied Thematic Analysis (TA) to qualitative data from in-depth interviews with parents (N = 16) whose adolescent child was randomly allocated to CBT in a large multisite RCT for adolescent depression (the IMPACT trial). Interviews were conducted at the end of treatment. RESULTS: We generated two main themes: parents' perceptions of the adolescent's journey through therapy, and parents' perceptions of the therapeutic setting and process. Each included four sub-themes. Parents talked about key factors that impacted on their child's progress through treatment, including the adolescent's readiness for therapy and the adolescent-therapist relationship. CONCLUSION: Parents' insights confirm the foundations of what is considered good clinical practice of CBT for adolescent depression, including tailoring therapy to the adolescent, and establishing a strong adolescent-therapist relationship. Parents recognised that, for CBT to be helpful, their child had to be willing to engage in therapy and able to develop a trusting relationship with their therapist

    Energy Sector Adaptation in Response to Water Scarcity

    Get PDF
    Integrated assessment models (IAMs) have largely ignored the impacts of water scarcity on the energy sector and the related implications for climate change mitigation. However, significant water is required in the production of energy, including for thermoelectric power plant cooling, hydropower generation, irrigation for bioenergy, and the extraction and refining of liquid fuels. With a changing climate and expectations of increasing competition for water from the agricultural and municipal sectors, it is unclear whether sufficient water will be available where needed to support water-intensive energy technologies (e.g., thermoelectric generation) in the future. Thus, it is important that water use and water constraints are incorporated into IAMs to better understand energy sector adaptation to water scarcity. The MESSAGE model has recently been updated with the capability to quantify the water consumption and withdrawal requirements of the energy sector and now includes several cooling technologies for addressing water scarcity. These new capabilities have been used to quantify water consumption, water withdrawal, and thermal pollution associated with pre-existing climate change mitigation scenarios. The current study takes the next step by introducing water constraints into Shared Socioeconomic Pathway (SSP) scenarios to examine whether and how the energy sector can adapt to water scarcity. This study will provide insight into the following questions related to energy sector adaptation to water scarcity: How does the energy sector adapt to water scarcity in different regions? What are the costs associated with adaptation to water scarcity? How do adaptations to constraints on water withdrawal and consumption differ? Is climate mitigation limited under water scarcity (esp. with low deployment of wind/ solar)? How important are dry cooling and seawater cooling for addressing water scarcity and climate mitigation

    Energy Sector Adaptation in Response to Water Scarcity

    Get PDF
    Integrated assessment models (IAMs) have largely ignored the impacts of water scarcity on the energy sector and the related implications for climate change mitigation. However, significant water is required in the production of energy, including for thermoelectric power plant cooling, hydropower generation, irrigation for bioenergy, and the extraction and refining of liquid fuels. With a changing climate and expectations of increasing competition for water from the agricultural and municipal sectors, it is unclear whether sufficient water will be available where needed to support water-intensive energy technologies (e.g., thermoelectric generation) in the future. Thus, it is important that water use and water constraints are incorporated into IAMs to better understand energy sector adaptation to water scarcity. The MESSAGE model has recently been updated with the capability to quantify the water consumption and withdrawal requirements of the energy sector and now includes several cooling technologies for addressing water scarcity. These new capabilities have been used to quantify water consumption, water withdrawal, and thermal pollution associated with pre-existing climate change mitigation scenarios. The current study takes the next step by introducing water constraints into Shared Socioeconomic Pathway (SSP) scenarios to examine whether and how the energy sector can adapt to water scarcity. This study will provide insight into the following questions related to energy sector adaptation to water scarcity: How does the energy sector adapt to water scarcity in different regions? What are the costs associated with adaptation to water scarcity? How do adaptations to constraints on water withdrawal and consumption differ? Is climate mitigation limited under water scarcity (esp. with low deployment of wind/ solar)? How important are dry cooling and seawater cooling for addressing water scarcity and climate mitigation

    Energy sector water use implications of a 2°C climate policy

    Get PDF
    Quantifying water implications of energy transitions is important for assessing long-term freshwater sustainability since large volumes of water are currently used throughout the energy sector. In this paper, we assess direct global energy sector water use and thermal water pollution across a broad range of energy system transformation pathways to assess water impacts of a 2 °C climate policy. A global integrated assessment model is equipped with the capabilities to account for the water impacts of technologies located throughout the energy supply chain. The model framework is applied across a broad range of 2 °C scenarios to highlight long-term water impact uncertainties over the 21st century. We find that water implications vary significantly across scenarios, and that adaptation in power plant cooling technology can considerably reduce global freshwater withdrawals and thermal pollution. Global freshwater consumption increases across all of the investigated 2 °C scenarios as a result of rapidly expanding electricity demand in developing regions and the prevalence of freshwater-cooled thermal power generation. Reducing energy demand emerges as a robust strategy for water conservation, and enables increased technological flexibility on the supply side to fulfill ambitious climate objectives. The results underscore the importance of an integrated approach when developing water, energy, and climate policy, especially in regions where rapid growth in both energy and water demands is anticipated

    Heat Capacity of PbS: Isotope Effects

    Full text link
    In recent years, the availability of highly pure stable isotopes has made possible the investigation of the dependence of the physical properties of crystals, in particular semiconductors, on their isotopic composition. Following the investigation of the specific heat (CpC_p, CvC_v) of monatomic crystals such as diamond, silicon, and germanium, similar investigations have been undertaken for the tetrahedral diatomic systems ZnO and GaN (wurtzite structure), for which the effect of the mass of the cation differs from that of the anion. In this article we present measurements for a semiconductor with rock salt structure, namely lead sulfide. Because of the large difference in the atomic mass of both constituents (MPbM_{\rm Pb}= 207.21 and (MSM_{\rm S}=32.06 a.m.u., for the natural isotopic abundance) the effects of varying the cation and that of the anion mass are very different for this canonical semiconductor. We compare the measured temperature dependence of Cp≈CvC_p \approx C_v, and the corresponding derivatives with respect to (MPbM_{\rm Pb} and MSM_{\rm S}), with \textit{\textit{ab initio}} calculations based on the lattice dynamics obtained from the local density approximation (LDA) electronic band structure. Quantitative deviations between theory and experiment are attributed to the absence of spin-orbit interaction in the ABINIT program used for the electronic band structure calculations.Comment: 17 pages including 10 Fig
    • …
    corecore