1,460 research outputs found

    Control of scroll wave turbulence using resonant perturbations

    Get PDF
    Turbulence of scroll waves is a sort of spatio-temporal chaos that exists in three-dimensional excitable media. Cardiac tissue and the Belousov-Zhabotinsky reaction are examples of such media. In cardiac tissue, chaotic behaviour is believed to underlie fibrillation which, without intervention, precedes cardiac death. In this study we investigate suppression of the turbulence using stimulation of two different types, "modulation of excitability" and "extra transmembrane current". With cardiac defibrillation in mind, we used a single pulse as well as repetitive extra current with both constant and feedback controlled frequency. We show that turbulence can be terminated using either a resonant modulation of excitability or a resonant extra current. The turbulence is terminated with much higher probability using a resonant frequency perturbation than a non-resonant one. Suppression of the turbulence using a resonant frequency is up to fifty times faster than using a non-resonant frequency, in both the modulation of excitability and the extra current modes. We also demonstrate that resonant perturbation requires strength one order of magnitude lower than that of a single pulse, which is currently used in clinical practice to terminate cardiac fibrillation. Our results provide a robust method of controlling complex chaotic spatio-temporal processes. Resonant drift of spiral waves has been studied extensively in two dimensions, however, these results show for the first time that it also works in three dimensions, despite the complex nature of the scroll wave turbulence.Comment: 13 pages, 12 figures, submitted to Phys Rev E 2008/06/13. Last version: 2008/09/18, after revie

    Semi-analytical Solution of Dirac equation in Schwarzschild Geometry

    Get PDF
    Separation of the Dirac equation in the spacetime around a Kerr black hole into radial and angular coordinates was done by Chandrasekhar in 1976. In the present paper, we solve the radial equations in a Schwarzschild geometry semi-analytically using Wentzel-Kramers-Brillouin approximation (in short WKB) method. Among other things, we present analytical expression of the instantaneous reflection and transmission coefficients and the radial wave functions of the Dirac particles. Complete physical parameter space was divided into two parts depending on the height of the potential well and energy of the incoming waves. We show the general solution for these two regions. We also solve the equations by a Quantum Mechanical approach, in which the potential is approximated by a series of steps and found that these two solutions agree. We compare solutions of different initial parameters and show how the properties of the scattered wave depend on these parameters.Comment: RevTex, 11 Latex pages and 12 Figures ; Classical and Quantum Gravity (in Press) (1999

    Phosphorylase kinase: Mathematical model

    Get PDF
    A mathematical model of the dynamic behavior of phosphorylase kinase was devised. Based on the results obtained, the function of this protein is discussed. It is suggested that phosphorylase kinase doses in a cAMP-dependent manner additional portions of glucoso-1-phosphate, which the muscle cell receives in response to contraction

    Extension of Frohlich's method to 4-fermion interactions

    Full text link
    Higher order terms of the transformed electron-phonon Hamiltonian, obtained by performing the Frohlich's transformation, are investigated. The influence of terms discarded by Frohlich (in particular those proportional to the third power of electron-phonon coupling) on the effective Hamiltonian is examined. To this end a second Frohlich-type transformation is performed, which yields, among others, an effective 4-electron interaction. This interaction is reduced to a form admitting solution of thermodynamics. The form of the coupling of the 4-electron interaction is found. By applying standard approximations, it is shown that this interaction is attractive with interaction coupling given by - D_{k_F}^6 / \omega_{k_F}^5, where D_{k} is electron-phonon coupling, \omega_{k}$ is phonon energy and k_F is Fermi momentum. The form of higher order terms of the original Frohlich-transformed H_{e-ph} are also found, up to terms proportional to the 6-th power of the coupling, that is up to those, which yield the effective 4-electron interactions.Comment: REVTeX4, 25 pages; major changes: added section and appendix about the form of 4-fermion interaction coupling, typos correcte
    corecore