10 research outputs found

    ΠžΡ†Π΅Π½ΠΊΠ° ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ качСства отСчСствСнной Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π³Ρ€ΠΈΠΏΠΏΠ°, ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΠΎΠΉ для ΠΈΠΌΠΌΡƒΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ насСлСния Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ эпидСмичСского сСзона 2017–2018 Π³Π³.

    Get PDF
    The efficacy of influenza vaccines has been a matter of considerable debate ever since the development of theΒ first influenza vaccine. The efficacy of currently used influenza vaccines depends on manyΒ  factors, including theΒ strain composition, the degree of homologyΒ  between the produced and epidemic influenza viruses, theΒ  vaccinationΒ coverage, and many other factors. Assessment of quality, i.e. determination of compliance of the product’sΒ qualityΒ  characteristics with the specification requirements, and assessmentΒ  of risks associated with the use of theΒ product were considered onlyΒ  in the context of general requirements for the quality of biologicals.Β  The article summarisesΒ the results of analysis of batch to batchΒ  consistency of the influenza inactivated polymer-subunit vaccine.Β The study included a retrospective assessment of the dataΒ  obtained during the product release control and testingΒ performed by an accredited testing centre as part of mandatory certification. TheΒ  data obtained may be used toΒ improve the production method andΒ  the system of statistical management of the production process, asΒ  well as toΒ assess the risks accompanying the production of influenza vaccine at each of the stages.Вопрос ΠΎΠ± эффСктивности Π²Π°ΠΊΡ†ΠΈΠ½ ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π³Ρ€ΠΈΠΏΠΏΠ° ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎ обсуТдаСмым со Π²Ρ€Π΅ΠΌΠ΅Π½ примСнСния ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠΏΠΏΠΎΠ·Π½ΠΎΠΉ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ  соврСмСнных Π²Π°ΠΊΡ†ΠΈΠ½ зависит ΠΎΡ‚ ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π² Ρ‚ΠΎΠΌ числС ΠΎΡ‚ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ²ΠΎΠ³ΠΎ состава,Β  стСпСни Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ производствСнных и эпидСмичСских вирусов Π³Ρ€ΠΈΠΏΠΏΠ°, ΠΎΡ…Π²Π°Ρ‚Π° насСлСния  профилактичСскими ΠΏΡ€ΠΈΠ²ΠΈΠ²ΠΊΠ°ΠΌΠΈ, Π΄Ρ€ΡƒΠ³ΠΈΡ… аспСктов. Вопрос ΠΎΡ†Π΅Π½ΠΊΠΈ качСства, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΉΡΡΒ  Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ соотвСтствия ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ качСства трСбованиям спСцификации Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉΒ  Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ, ΠΊΠ°ΠΊ ΠΈ вопрос ΠΎΡ†Π΅Π½ΠΊΠΈ рисков ΠΏΡ€ΠΈ использовании Π²Π°ΠΊΡ†ΠΈΠ½Β ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π³Ρ€ΠΈΠΏΠΏΠ°,Β  рассматривался лишь Π² контСкстС ΠΎΠ±Ρ‰ΠΈΡ… Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ качСству иммунобиологичСских прСпаратов. Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π°Β  ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ качСства на ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ сСрий Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ Π³Ρ€ΠΈΠΏΠΏΠΎΠ·Π½ΠΎΠΉΒ  ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° рСтроспСктивная ΠΎΡ†Π΅Π½ΠΊΠ° Π΄Π°Π½Π½Ρ‹Ρ…Β  Π²Ρ‹ΠΏΡƒΡΠΊΠ°ΡŽΡ‰Π΅Π³ΠΎ контроля ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² испытаний, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ…Β Π²Β  Π°ΠΊΠΊΡ€Π΅Π΄ΠΈΡ‚ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΈΡΠΏΡ‹Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅, Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ сСртификации. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅Β ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ производства ΠΈΒ  систСмы статистичСского управлСния производствСнного процСсса, для ΠΎΡ†Π΅Π½ΠΊΠΈ рисков,Β  ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ… процСсс приготовлСния гриппозной Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· Π΅Π³ΠΎ этапов

    Π Π΅Π΄Π°ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠΌΠ° ΠΈ биомСдицинскиС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹: соврСмСнноС состояниС, Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ

    Get PDF
    Advances in ex vivo technologies of human genome editing have made it possible to develop new approaches to the treatment of genetic, oncological, infectious and other diseases, which may involve the use of biomedical cell products. However, despite the rapid development of these technologies and a large number of clinical trials conducted in many countries around the world, only 4 products (Strimvelis, Zalmoxis, Kymriah and Yescarta) containing ex vivo genetically modified human cells are authorised for use in the European Union and the United States of America. This paper considers three promising technologies (ZFN, TALEN and CRISPR) that allow for easy and effective editing of the genome at the sites of interest, thereby creating a platform for further development of the genetic engineering of human cells. It describes the technology of engineering chimeric antigen receptors (CARs). It also provides data on the efficacy and safety of the approved products: Strimvelis which contains autologous CD34+ cells transduced ex vivo with a retroviral vector containing adenosine deaminase gene, Zalmoxis which contains modified allogeneic T-cells, and two products: Kymriah and Yescarta which contain autologous T-cells with CARs to CD19 antigen, intended for the treatment of CD19+ hematological malignancies.УспСхи Π² тСхнологиях ex vivo рСдактирования Π³Π΅Π½ΠΎΠΌΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ гСнСтичСских, экологичСских, ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π² Ρ‚ΠΎΠΌ числС с использованиСм биомСдицинских ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ². Но, нСсмотря Π½Π° быстроС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΈ большоС количСство ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… клиничСских исслСдований Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… странах ΠΌΠΈΡ€Π°, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 4 ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° (Strimvelis, Zalmoxis, Kymriah ΠΈ Yescarta), содСрТащиС ex vivo Π³Π΅Π½Π½ΠΎ-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½Ρ‹ ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Π² странах ЕвропСйского союза ΠΈ БША. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны Ρ‚Ρ€ΠΈ пСрспСктивныС Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ (ZFN, TALEN ΠΈ CRISPR), ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ Π»Π΅Π³ΠΊΠΎ ΠΈ эффСктивно ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠΌΠ° Π² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… сайтах, Ρ‚Π΅ΠΌ самым создавая ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡƒ для дальнСйшСго развития Π³Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Описана тСхнология получСния Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² (CAR). Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ свСдСния ΠΎΠ± эффСктивности ΠΈ бСзопасности ΠΎΠ΄ΠΎΠ±Ρ€Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²: Strimvelis, содСрТащСго Π°ΡƒΡ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ CD34+-ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ex vivo трансдуцированныС рСтровирусным Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ с Π³Π΅Π½ΠΎΠΌ Π°Π΄Π΅Π½ΠΎΠ·ΠΈΠ½Π΄Π΅Π·Π°ΠΌΠΈΠ½Π°Π·Ρ‹, Zalmoxis, содСрТащСго ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π°Π»Π»ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Π’-ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π²ΡƒΡ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Kymriah ΠΈ Yescarta, содСрТащих Π°ΡƒΡ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ T-ΠΊΠ»Π΅Ρ‚ΠΊΠΈ с Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌΠΈ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΊ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Ρƒ CD19, ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… для лСчСния CD19+ гСматологичСских злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ

    ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-гСнСтичСскоС исслСдованиС ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ подлинности ΡˆΡ‚Π°ΠΌΠΌΠ° Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32, примСняСмого для производства Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ антирабичСской ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½ΠΎΠΉ ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ сухой

    Get PDF
    Rabies is an acute viral disease caused by a virus of the Rhabdoviridae family of the Lyssavirus genus, which affects the central nervous system and is characterised by absolute mortality. Vaccination is the only way to prevent the disease in humans. One of the products used for vaccination is a cultural concentrated purified inactivated dry rabies vaccine produced by the Federal State Budgetary Institution of Science β€œChumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (hereinafterβ€”Chumakov Center).The aim of the study was to examine the structure of the working virus seed of Vnukovo-32 strain used by the Chumakov Center for rabies vaccine production, to assess its genetic stability during production, to explore the possibility of using molecular genetic methods for identification of the production strain in the finished dosage form, and to study the nucleotide sequence of the CVS strain.Materials and methods: Vnukovo-32 rabies virus production strain, working virus seeds, finished batches of the rabies vaccine, CVS fixed rabies virus strain used in the assessment of specific immunity. The molecular genetic study was performed using RT-PCR followed by restriction and sequencing.Results: the paper presents the results of nucleotide sequence analysis of the G gene fragment obtained from the Vnukovo-32 production strain, batches of the working virus seed, and finished batches of the rabies vaccine produced in 2012, 2018, and 2019, and the CVS fixed rabies virus strain used in the assessment of the vaccine’s specific immunity. The study demonstrated that restriction analysis could be used for Vnukovo-32 strain identification at all production stages, including the finished dosage form.Conclusion: Vnukovo-32 and CVS strains used by the Chumakov Center are rabies viruses. Analysis of the nucleotide sequence of the G gene fragment showed that the Vnukovo-32 strain remains stable throughout different production stages. The obtained nucleotide sequence of gene G of the Vnukovo-32 strain was deposited in GenBank (accession number MN116503). The study demonstrated that restriction analysis could be used for Vnukovo-32 strain identification at all production stages, including the finished dosage form.Β Π‘Π΅ΡˆΠ΅Π½ΡΡ‚Π²ΠΎ – острая вирусная инфСкция, вызываСмая вирусом сСмСйства Rhabdoviridae Ρ€ΠΎΠ΄Π° Lyssavirus ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°ΡΡΡ симптомами пораТСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы ΠΈ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. ЕдинствСнной Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ заболСвания Ρƒ людСй являСтся Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠ°. Одним ΠΈΠ· ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π² этих цСлях, являСтся Π²Π°ΠΊΡ†ΠΈΠ½Π° антирабичСская ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½Π°Ρ концСнтрированная очищСнная инактивированная сухая, выпускаСмая ЀГБНУ «ЀНЦИРИП ΠΈΠΌ. М. П. Π§ΡƒΠΌΠ°ΠΊΠΎΠ²Π° РАН».ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: исслСдованиС структуры производствСнного, Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ посСвного вируса Π±Π΅ΡˆΠ΅Π½ΡΡ‚Π²Π° ΡˆΡ‚Π°ΠΌΠΌΠ° Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ЀГБНУ «ЀНЦИРИП ΠΈΠΌ. М. П. Π§ΡƒΠΌΠ°ΠΊΠΎΠ²Π° РАН» для производства антирабичСской Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹, Π΅Π³ΠΎ гСнСтичСской ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½Π° этапах производства, ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ возмоТности примСнСния молСкулярно-гСнСтичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² для подтвСрТдСния подлинности производствСнного ΡˆΡ‚Π°ΠΌΠΌΠ° Π² Π³ΠΎΡ‚ΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡˆΡ‚Π°ΠΌΠΌΠ° CVS.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: производствСнный ΡˆΡ‚Π°ΠΌΠΌ вируса Π±Π΅ΡˆΠ΅Π½ΡΡ‚Π²Π° Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32, Ρ€Π°Π±ΠΎΡ‡ΠΈΠ΅ посСвныС вирусы, Π³ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ сСрии Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ антирабичСской, ΡˆΡ‚Π°ΠΌΠΌ CVS фиксированного вируса Π±Π΅ΡˆΠ΅Π½ΡΡ‚Π²Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ для ΠΎΡ†Π΅Π½ΠΊΠΈ спСцифичСского ΠΈΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚Π°. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-гСнСтичСскоС исслСдованиС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ с использованиСм ОВ-ПЦР с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ рСстрикциСй ΠΈ сСквСнированиСм.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° Π³Π΅Π½Π° G, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· производствСнного ΡˆΡ‚Π°ΠΌΠΌΠ° Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32, сСрий Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ посСвного вируса ΠΈ Π³ΠΎΡ‚ΠΎΠ²Ρ‹Ρ… сСрий Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ антирабичСской, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… Π² 2012, 2018, 2019 Π³., ΡˆΡ‚Π°ΠΌΠΌΠ° фиксированного вируса Π±Π΅ΡˆΠ΅Π½ΡΡ‚Π²Π° CVS, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ для ΠΎΡ†Π΅Π½ΠΊΠΈ спСцифичСской активности Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния рСстрикционного Π°Π½Π°Π»ΠΈΠ·Π° для подтвСрТдСния подлинности ΡˆΡ‚Π°ΠΌΠΌΠ° Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32 Π½Π° всСх этапах производства, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π³ΠΎΡ‚ΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: ΡˆΡ‚Π°ΠΌΠΌΡ‹ Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32 ΠΈ CVS, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² ЀГБНУ «ЀНЦИРИП ΠΈΠΌ. М. П. Π§ΡƒΠΌΠ°ΠΊΠΎΠ²Π° РАН», ΡΠ²Π»ΡΡŽΡ‚ΡΡ вирусами Π±Π΅ΡˆΠ΅Π½ΡΡ‚Π²Π°. Анализ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° Π³Π΅Π½Π° G ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΡˆΡ‚Π°ΠΌΠΌ Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32 стабилСн Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… этапах производства. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ нуклСотидная ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π³Π΅Π½Π° G ΡˆΡ‚Π°ΠΌΠΌΠ° Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32 Π΄Π΅ΠΏΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π° Π² GenBank (Π½ΠΎΠΌΠ΅Ρ€ MN116503). Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния рСстрикционного Π°Π½Π°Π»ΠΈΠ·Π° для подтвСрТдСния подлинности ΡˆΡ‚Π°ΠΌΠΌΠ° Π’Π½ΡƒΠΊΠΎΠ²ΠΎ-32 вируса Π±Π΅ΡˆΠ΅Π½ΡΡ‚Π²Π° Π½Π° всСх этапах производства, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π³ΠΎΡ‚ΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹

    Analysis of Batch to Batch Consistency of a Locally Produced Influenza Vaccine for the 2017–2018 Influenza Season

    Get PDF
    The efficacy of influenza vaccines has been a matter of considerable debate ever since the development of theΒ first influenza vaccine. The efficacy of currently used influenza vaccines depends on manyΒ  factors, including theΒ strain composition, the degree of homologyΒ  between the produced and epidemic influenza viruses, theΒ  vaccinationΒ coverage, and many other factors. Assessment of quality, i.e. determination of compliance of the product’sΒ qualityΒ  characteristics with the specification requirements, and assessmentΒ  of risks associated with the use of theΒ product were considered onlyΒ  in the context of general requirements for the quality of biologicals.Β  The article summarisesΒ the results of analysis of batch to batchΒ  consistency of the influenza inactivated polymer-subunit vaccine.Β The study included a retrospective assessment of the dataΒ  obtained during the product release control and testingΒ performed by an accredited testing centre as part of mandatory certification. TheΒ  data obtained may be used toΒ improve the production method andΒ  the system of statistical management of the production process, asΒ  well as toΒ assess the risks accompanying the production of influenza vaccine at each of the stages

    Genome-Editing and Biomedical Cell Products: Current State, Safety and Efficacy

    Get PDF
    Advances in ex vivo technologies of human genome editing have made it possible to develop new approaches to the treatment of genetic, oncological, infectious and other diseases, which may involve the use of biomedical cell products. However, despite the rapid development of these technologies and a large number of clinical trials conducted in many countries around the world, only 4 products (Strimvelis, Zalmoxis, Kymriah and Yescarta) containing ex vivo genetically modified human cells are authorised for use in the European Union and the United States of America. This paper considers three promising technologies (ZFN, TALEN and CRISPR) that allow for easy and effective editing of the genome at the sites of interest, thereby creating a platform for further development of the genetic engineering of human cells. It describes the technology of engineering chimeric antigen receptors (CARs). It also provides data on the efficacy and safety of the approved products: Strimvelis which contains autologous CD34+ cells transduced ex vivo with a retroviral vector containing adenosine deaminase gene, Zalmoxis which contains modified allogeneic T-cells, and two products: Kymriah and Yescarta which contain autologous T-cells with CARs to CD19 antigen, intended for the treatment of CD19+ hematological malignancies

    Molecular Genetic Testing of Stability and Identification of Vnukovo-32 Strain Used for Production of the Cultural Concentrated Purified Inactivated Dry Rabies Vaccine

    Get PDF
    Rabies is an acute viral disease caused by a virus of the Rhabdoviridae family of the Lyssavirus genus, which affects the central nervous system and is characterised by absolute mortality. Vaccination is the only way to prevent the disease in humans. One of the products used for vaccination is a cultural concentrated purified inactivated dry rabies vaccine produced by the Federal State Budgetary Institution of Science β€œChumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (hereinafterβ€”Chumakov Center).The aim of the study was to examine the structure of the working virus seed of Vnukovo-32 strain used by the Chumakov Center for rabies vaccine production, to assess its genetic stability during production, to explore the possibility of using molecular genetic methods for identification of the production strain in the finished dosage form, and to study the nucleotide sequence of the CVS strain.Materials and methods: Vnukovo-32 rabies virus production strain, working virus seeds, finished batches of the rabies vaccine, CVS fixed rabies virus strain used in the assessment of specific immunity. The molecular genetic study was performed using RT-PCR followed by restriction and sequencing.Results: the paper presents the results of nucleotide sequence analysis of the G gene fragment obtained from the Vnukovo-32 production strain, batches of the working virus seed, and finished batches of the rabies vaccine produced in 2012, 2018, and 2019, and the CVS fixed rabies virus strain used in the assessment of the vaccine’s specific immunity. The study demonstrated that restriction analysis could be used for Vnukovo-32 strain identification at all production stages, including the finished dosage form.Conclusion: Vnukovo-32 and CVS strains used by the Chumakov Center are rabies viruses. Analysis of the nucleotide sequence of the G gene fragment showed that the Vnukovo-32 strain remains stable throughout different production stages. The obtained nucleotide sequence of gene G of the Vnukovo-32 strain was deposited in GenBank (accession number MN116503). The study demonstrated that restriction analysis could be used for Vnukovo-32 strain identification at all production stages, including the finished dosage form
    corecore