23 research outputs found

    Molecular diagnosis for the novel coronavirus SARS-CoV-2: lessons learnt from the Ghana experience

    Get PDF
    Background: A novel coronavirus, SARS-CoV-2 is currently causing a worldwide pandemic. The first cases of SARS-CoV-2 infection were recorded in Ghana on March 12, 2020. Since then, the country has been combatting countrywide community spread. This report describes how the Virology Department, Noguchi Memorial Institute for Medical Research (NMIMR) is supporting the Ghana Health Service (GHS) to diagnose infections with this virus in Ghana.Methods: The National Influenza Centre (NIC) in the Virology Department of the NMIMR, adopted real-time Polymerase Chain Reaction (rRT-PCR) assays for the diagnosis of the SARS-CoV-2 in January 2020. Samples from suspected cases and contact tracing across Ghana were received and processed for SARS-CoV-2. Samples were ‘pooled’ to enable simultaneous batch testing of samples without reduced sensitivity.Outcomes: From February 3 to August 21, the NMIMR processed 283 946 (10%) samples. Highest number of cases were reported in June when the GHS embarked on targeted contact tracing which led to an increase in number of samples processed daily, peaking at over 7,000 samples daily. There were several issues to overcome including rapid consumption of reagents and consumables. Testing however continued successfully due to revised procedures, additional equipment and improved pipeline of laboratory supplies. Test results are now provided within 24 to 48 hours of sample submission enabling more effective response and containment.Conclusion: Following the identification of the first cases of SARS-CoV-2infection by the NMIMR, the Institute has trained other centres and supported the ramping up of molecular testing capacity in Ghana. This provides a blueprint to enable Ghana to mitigate further epidemics and pandemics

    Validation of an integrated pedal desk and electronic behavior tracking platform

    Get PDF
    Background This study tested the validity of revolutions per minute (RPM) measurements from the Pennington Pedal Desk™. Forty-four participants (73 % female; 39 ± 11.4 years-old; BMI 25.8 ± 5.5 kg/m2 [mean ± SD]) completed a standardized trial consisting of guided computer tasks while using a pedal desk for approximately 20 min. Measures of RPM were concurrently collected by the pedal desk and the Garmin Vector power meter. After establishing the validity of RPM measurements with the Garmin Vector, we performed equivalence tests, quantified mean absolute percent error (MAPE), and constructed Bland–Altman plots to assess agreement between RPM measures from the pedal desk and the Garmin Vector (criterion) at the minute-by-minute and trial level (i.e., over the approximate 20 min trial period). Results The average (mean ± SD) duration of the pedal desk trial was 20.5 ± 2.5 min. Measures of RPM (mean ± SE) at the minute-by-minute (Garmin Vector: 54.8 ± 0.4 RPM; pedal desk: 55.8 ± 0.4 RPM) and trial level (Garmin Vector: 55.0 ± 1.7 RPM; pedal desk: 56.0 ± 1.7 RPM) were deemed equivalent. MAPE values for RPM measured by the pedal desk were small (minute-by-minute: 2.1 ± 0.1 %; trial: 1.8 ± 0.1 %) and no systematic relationships in error variance were evident by Bland–Altman plots. Conclusion The Pennington Pedal Desk™ provides a valid count of RPM, providing an accurate metric to promote usage

    The influence of strain rate and porosity on the deformation and fracture of titanium and nickel

    No full text
    The influence of strain rate on the tensile deformation and fracture behavior of powder-fabricated titanium and nickel containing porosity has been investigated. Measurements of uniform strain, local fracture strains, and elongations to failure show that, over the range of strain rates from 10-4 to 102 s-1, there is little or no effect of the strain rate on the fracture behavior of these materials at any of the porosity levels studied. In contrast, increasing porosity causes significant decreases in the yield stress, strain-hardening exponent, and ductility; these effects are more pronounced in the titanium than in the nickel. The porosity-induced loss of ductility can be understood in terms of the combined effects of enhanced geometric softening and shear localization due to a network of imperfections introduced into the materials by the presence of porosity. Secondary effects due to hydrogen embrittlement and thermal gradients forming during deformation are also noted
    corecore