2,963 research outputs found

    One-Dimensional Theory of the Quantum Hall System

    Full text link
    We consider the lowest Landau level on a torus as a function of its circumference L1L_1. When L1→0L_1\to 0, the ground state at general rational filling fraction is a crystal with a gap--a Tao-Thouless state. For filling fractions ν=p/(2pm+1)\nu=p/(2pm+1), these states are the limits of Laughlin's or Jain's wave functions describing the gapped quantum Hall states when L1→∞L_1\to \infty. For the half-filled Landau level, there is a transition to a Fermi sea of non-interacting neutral dipoles, or rather to a Luttinger liquid modification thereof, at L1∼5L_1\sim5 magnetic lengths. This state is a version of the Rezayi-Read state, and develops continuously into the state that is believed to describe the observed metallic phase as L1→∞L_1\to \infty. Furthermore, the effective Landau level structure that emerges within the lowest Landau level follows from the magnetic symmetries.Comment: 4 pages, 1 figur

    Composite fermions in the Fractional Quantum Hall Effect: Transport at finite wavevector

    Full text link
    We consider the conductivity tensor for composite fermions in a close to half-filled Landau band in the temperature regime where the scattering off the potential and the trapped gauge field of random impurities dominates. The Boltzmann equation approach is employed to calculate the quasiclassical transport properties at finite effective magnetic field, wavevector and frequency. We present an exact solution of the kinetic equation for all parameter regimes. Our results allow a consistent description of recently observed surface acoustic wave resonances and other findings.Comment: REVTEX, 4 pages, 1 figur

    Stability and effective masses of composite-fermions in the first and second Landau Level

    Full text link
    We propose a measure of the stability of composite fermions (CF's) at even-denominator Landau-level filling fractions. Assuming Landau-level mixing effects are not strong, we show that the CF liquid at ν=2+1/2\nu=2+1/2 in the n=1n=1 Landau level cannot exist and relate this to the absence of a hierarchy of incompressible states for filling fractions 2+1/3<ν<2+2/32+1/3 < \nu < 2+2/3. We find that a polarized CF liquid should exist at ν=2+1/4\nu=2+1/4. We also show that, for CF states, the variation with system size of the ground state energy of interacting electrons follows that for non-interacting particles in zero magnetic field. We use this to estimate the CF effective masses.Comment: 9 pages, Revtex, PSIZ-TP-940

    Effective mass of composite fermion: a phenomenological fit in with anomalous propagation of surface acoustic wave

    Full text link
    We calculate the conductivity associated with the anomalous propagation of a surface acoustic wave above a two-dimensional electron gas at ν=1/2\nu=1/2. Murthy-Shankar's middle representation is adopted and a contribution to the response functions beyond the random phase approximation has been taken into account. We give a phenomenological fit for the effective mass of composite fermion in with the experimental data of the anomalous propagation of surface acoustic wave at ν=1/2\nu=1/2 and find the phenomenological value of the effective mass is several times larger than the theoretical value mth∗=6ϵ/e2l1/2m_{th}^*=6\epsilon/e^2l_{1/2} derived from the Hartree-Fock approximation. We compare our phenomenologically fitting composite fermion effective mass with those appeared in the measurements of the activation energy and the Shubnikov-de Haas effect and find that our result is fairly reasonable.Comment: 8 pages, 5 figures, the longer version of cond-mat/9801131 with crucial corrections, accepted for publication by PR

    A Fermi Fluid Description of the Half-Filled Landau Level

    Full text link
    We present a many-body approach to calculate the ground state properties of a system of electrons in a half-filled Landau level. Our starting point is a simplified version of the recently proposed trial wave function where one includes the antisymmetrization operator to the bosonic Laughlin state. Using the classical plasma analogy, we calculate the pair-correlation function, the static structure function and the ground state energy in the thermodynamic limit. These results are in good agreement with the expected behavior at ν=12\nu=\frac12.Comment: 4 pages, REVTEX, and 4 .ps file

    Current Path Properties of the Transport Anisotropy at Filling Factor 9/2

    Full text link
    To establish the presence and orientation of the proposed striped phase in ultra-high mobility 2D electron systems at filling factor 9/2, current path transport properties are determined by varying the separation and allignment of current and voltage contacts. Contacts alligned orthogonal to the proposed intrinsic striped phase produce voltages consistent with current spreading along the stripes; current driven along the proposed stripe direction results in voltages consistent with channeling along the stripes. Direct comparison is made to current spreading/channeling properties of artificially induced 1D charge modulated systems, which indicates the 9/2 direction.Comment: 10 pages, 4 figure

    Compressible Anisotropic States around the Half-Filled Landau Levels

    Full text link
    Using the von Neumann lattice formalism, we study compressible anisotropic states around the half-filled Landau levels in the quantum Hall system. In these states the unidirectional charge density wave (UCDW) state seems to be the most plausible state. The charge density profile and Hartree-Fock energy of the UCDW are calculated self-consistently. The wave length dependence of the energy for the UCDW is also obtained numerically. We show that the UCDW is regarded as a collection of the one-dimensional lattice Fermi-gas systems which extend to the uniform direction. The kinetic energy of the gas system is generated dynamically from the Coulomb interaction.Comment: 6 pages, 5 figures, accepted version for publication in PR
    • …
    corecore