117 research outputs found

    Dynamical Mean-Field Theory Simulations with the Adaptive Sampling Configuration Interaction Method

    Get PDF
    In the pursuit of accurate descriptions of strongly correlated quantum many-body systems, dynamical mean-field theory (DMFT) has been an invaluable tool for elucidating the spectral properties and quantum phases of both phenomenological models and ab initio descriptions of real materials. Key to the DMFT process is the self-consistent map of the original system into an Anderson impurity model, the ground state of which is computed using an impurity solver. The power of the method is thus limited by the complexity of the impurity model the solver can handle. Simulating realistic systems generally requires many correlated sites. By adapting the recently proposed adaptive sampling configuration interaction (ASCI) method as an impurity solver, we enable much more efficient zero temperature DMFT simulations. The key feature of the ASCI method is that it selects only the most relevant Hilbert space degrees of freedom to describe the ground state. This reduces the numerical complexity of the calculation, which will allow us to pursue future DMFT simulations with more correlated impurity sites than in previous works. Here we present the ASCI-DMFT method and example calculations on the one-dimensional and two-dimensional Hubbard models that exemplify its efficient convergence and timing properties. We show that the ASCI approach is several orders of magnitude faster than the current best published ground state DMFT simulations, which allows us to study the bath discretization error in simulations with small clusters, as well as to address cluster sizes beyond the current state of the art. Our approach can also be adapted for other embedding methods such as density matrix embedding theory and self-energy embedding theory.Comment: 12 pages, 11 figures, supplemental informatio

    Cluster decomposition of full configuration interaction wave functions: a tool for chemical interpretation of systems with strong correlation

    Full text link
    Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e. those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI (ASCI) algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the {\pi} space of polyacenes, as well as (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2_2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.Comment: 15 pages, 5 figure

    A deterministic alternative to the full configuration interaction quantum Monte Carlo method

    Full text link
    Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method to achieve chemical accuracy for a wide range of systems, including the difficult Cr2_{2} dimer. In addition our method also allows efficient calculation of excited state energies, for which we illustrate with benchmark results for the excited states of C2_{2}.Comment: 4 pages, 2 figure

    Pre-optimizing variational quantum eigensolvers with tensor networks

    Full text link
    The variational quantum eigensolver (VQE) is a promising algorithm for demonstrating quantum advantage in the noisy intermediate-scale quantum (NISQ) era. However, optimizing VQE from random initial starting parameters is challenging due to a variety of issues including barren plateaus, optimization in the presence of noise, and slow convergence. While simulating quantum circuits classically is generically difficult, classical computing methods have been developed extensively, and powerful tools now exist to approximately simulate quantum circuits. This opens up various strategies that limit the amount of optimization that needs to be performed on quantum hardware. Here we present and benchmark an approach where we find good starting parameters for parameterized quantum circuits by classically simulating VQE by approximating the parameterized quantum circuit (PQC) as a matrix product state (MPS) with a limited bond dimension. Calling this approach the variational tensor network eigensolver (VTNE), we apply it to the 1D and 2D Fermi-Hubbard model with system sizes that use up to 32 qubits. We find that in 1D, VTNE can find parameters for PQC whose energy error is within 0.5% relative to the ground state. In 2D, the parameters that VTNE finds have significantly lower energy than their starting configurations, and we show that starting VQE from these parameters requires non-trivially fewer operations to come down to a given energy. The higher the bond dimension we use in VTNE, the less work needs to be done in VQE. By generating classically optimized parameters as the initialization for the quantum circuit one can alleviate many of the challenges that plague VQE on quantum computers.Comment: 10 page

    Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method.

    Get PDF
    Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets

    Interpolated wave functions for nonadiabatic simulations with the fixed-node quantum Monte Carlo method

    Full text link
    Simulating nonadiabatic effects with many-body wave function approaches is an open field with many challenges. Recent interest has been driven by new algorithmic developments and improved theoretical understanding of properties unique to electron-ion wave functions. Fixed-node diffusion Monte Caro is one technique that has shown promising results for simulating electron-ion systems. In particular, we focus on the CH molecule for which previous results suggested a relatively significant contribution to the energy from nonadiabatic effects. We propose a new wave function ansatz for diatomic systems which involves interpolating the determinant coefficients calculated from configuration interaction methods. We find this to be an improvement beyond previous wave function forms that have been considered. The calculated nonadiabatic contribution to the energy in the CH molecule is reduced compared to our previous results, but still remains the largest among the molecules under consideration.Comment: 7 pages, 3 figure
    • …
    corecore