86 research outputs found
Magnetic phase diagram of Fe1.1Te1-xSex: A comparative study with the stoichiometric superconducting FeTe1-xSex system
We report a comparative study of the series Fe1.1Te1-xSex and the
stoichiometric FeTe1-xSex to bring out the difference in their magnetic,
superconducting and electronic properties. The Fe1.1Te1-xSex series is found to
be magnetic and its microscopic properties are elucidated through Moessbauer
spectroscopy. The magnetic phase diagram of Fe1.1Te1-xSex is traced out and it
shows the emergence of spin-glass state when the antiferromagnetic state is
destabilized by the Se substitution. The isomer shift and quadrupolar splitting
obtained from the Moessbauer spectroscopy clearly brings out the electronic
differences in these two series.Comment: 6 pages, 9 figure
Mechanical, electrical and thermal properties of graphene oxide-carbon nanotube/ ABS hybrid polymer nanocomposites
Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs) and graphene oxide-carbon nanotube (GCNTs) hybrid Bucky paper (BP) reinforced acrylonitrile-butadiene-styrene (ABS) composites are prepared via vacuum filtration followed by hot compression molding. The nanomechanical, electrical and thermal properties of these BP reinforced ABS composites are studied. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid composites reached to 389.98 +/- 91.79 MPa and 7669.6 +/- 1179.12 MPa respectively. Other nanomechanical parameters such as plastic index parameter, elastic recovery, the ratio of residual displacement after load removal and displacement at maximum load are also investigated. The improved nanomechanical properties are correlated with Raman spectroscopy and scanning electron microscopy (SEM). It is found that GCNTs and their composites showed the higher value of defect density. The maximum value of defect density range for GCNTs and GCNTs-ABS is (297.4 to 159.6) and (16.0 to11.6), respectively. The higher defect density of GCNTs indicates that the interfacial interaction between the ABS, which was further correlated with electrical and thermal properties. Additionally, the through-plane electrical conductivities of MWCNTs, FCNTs and GCNTs based ABS composites were 6.5 +/- 0.6, 4.5 +/- 0.7 and 6.97 +/- 1.2 S/cm respectively and thermal conductivities of MWCNTs, FCNTs and GCNTs reinforced ABS composites; 1.80, 1.70 and 1.98 W/mK respectively. These GCNTs-ABS composites with this value of thermal conductivity can be used in various applications of efficient heat dissipative materials for electronic devices
Magnetic excitations of Fe_{1+y}Se_xTe_{1-x} in magnetic and superconductive phases
We have used inelastic neutron scattering and muon-spin rotation to compare
the low energy magnetic excitations in single crystals of superconducting
Fe1.01Se0.50Te0.50 and non-superconducting Fe1.10Se0.25Te0.75. We confirm the
existence of a spin resonance in the superconducting phase of
Fe1.01Se0.50Te0.50, at an energy of 7 meV and a wavevector of (1/2,1/2,0). The
non-superconducting sample exhibits two incommensurate magnetic excitations at
(1/2,1/2,0)\pm(0.18,-0.18,0) which rise steeply in energy, but no resonance is
observed at low energies. A strongly dispersive low-energy magnetic excitation
is also observed in Fe1.10Se0.25Te0.75 close to the commensurate
antiferromagnetic ordering wavevector (1/2-\delta,0,1/2) where \delta \approx
0.03. The magnetic correlations in both samples are found to be quasi-two
dimensional in character and persist well above the magnetic
(Fe1.10Se0.25Te0.75) and superconducting (Fe1.01Se0.50Te0.50) transition
temperatures.Comment: 10 pages, 4 figure
One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property
ZnO nanomaterials are synthesized using one-pot synthesis method. Equimolar solution of Zinc Nitrate hexahydrate (Zn(NO3)(2).6H(2)O) and Hexamethylenetetramine (C6H12N4) is used as a precursor for ZnO formation. Different nanostructures of ZnO are achieved by controlling the pH of the growth solution in the range 2-12 (acidic to alkali). ZnO nanostructures are evaluated for hydrophobic property using static contact angle measurement setup and UV photosensing activity. Surface morphology, structural properties and compositional analysis of ZnO nanostructures are examined by field emission scanning electron microscope (FE-SEM), energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscope (FEG-TEM) and X-ray diffraction (XRD) measurements. Existence of ZnO wurtzite structure is confirmed from XRD study and is analyzed by Rietveld refinement method. Nanomaterials are characterized using Raman spectroscopy which confirms highest oxygen deficiency in ZnO nanorods. The material shows remarkable superhydrophobic and UV photosensing property and hence the name multifunctional. Among all morphologies grown at different pH values, ZnO nanorods show superhydrophobic nature with contact angle more than 170 degrees. Total surface energy value of ZnO nanostructures is calculated using Wendt two-component theory. Different ZnO nanostructures (with variation of pH value) are used to study UV photosensing property. Responsivity and photocurrent show a strong dependence on the morphology of ZnO
Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial
Background
Infections acquired in hospital are an important cause of morbidity and mortality in very preterm infants. Several small trials have suggested that supplementing the enteral diet of very preterm infants with lactoferrin, an antimicrobial protein processed from cow's milk, prevents infections and associated complications. The aim of this large randomised controlled trial was to collect data to enhance the validity and applicability of the evidence from previous trials to inform practice.
Methods
In this randomised placebo-controlled trial, we recruited very preterm infants born before 32 weeks' gestation in 37 UK hospitals and younger than 72 h at randomisation. Exclusion criteria were presence of a severe congenital anomaly, anticipated enteral fasting for longer than 14 days, or no realistic prospect of survival. Eligible infants were randomly assigned (1:1) to receive either enteral bovine lactoferrin (150 mg/kg per day; maximum 300 mg/day; lactoferrin group) or sucrose (same dose; control group) once daily until 34 weeks' postmenstrual age. Web-based randomisation minimised for recruitment site, gestation (completed weeks), sex, and single versus multifetal pregnancy. Parents, caregivers, and outcome assessors were unaware of group assignment. The primary outcome was microbiologically confirmed or clinically suspected late-onset infection (occurring >72 h after birth), which was assessed in all participants for whom primary outcome data was available by calculating the relative risk ratio with 95% CI between the two groups. The trial is registered with the International Standard Randomised Controlled Trial Number 88261002.
Findings
We recruited 2203 participants between May 7, 2014, and Sept 28, 2017, of whom 1099 were assigned to the lactoferrin group and 1104 to the control group. Four infants had consent withdrawn or unconfirmed, leaving 1098 infants in the lactoferrin group and 1101 in the sucrose group. Primary outcome data for 2182 infants (1093 [99·5%] of 1098 in the lactoferrin group and 1089 [99·0] of 1101 in the control group) were available for inclusion in the modified intention-to-treat analyses. 316 (29%) of 1093 infants in the intervention group acquired a late-onset infection versus 334 (31%) of 1089 in the control group. The risk ratio adjusted for minimisation factors was 0·95 (95% CI 0·86–1·04; p=0·233). During the trial there were 16 serious adverse events for infants in the lactoferrin group and 10 for infants in the control group. Two events in the lactoferrin group (one case of blood in stool and one death after intestinal perforation) were assessed as being possibly related to the trial intervention.
Interpretation
Enteral supplementation with bovine lactoferrin does not reduce the risk of late-onset infection in very preterm infants. These data do not support its routine use to prevent late-onset infection and associated morbidity or mortality in very preterm infants.
Funding
UK National Institute for Health Research Health Technology Assessment programme (10/57/49)
Recommended from our members
Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial
Background
Infections acquired in hospital are an important cause of morbidity and mortality in very preterm infants. Several small trials have suggested that supplementing the enteral diet of very preterm infants with lactoferrin, an antimicrobial protein processed from cow's milk, prevents infections and associated complications. The aim of this large randomised controlled trial was to collect data to enhance the validity and applicability of the evidence from previous trials to inform practice.
Methods
In this randomised placebo-controlled trial, we recruited very preterm infants born before 32 weeks' gestation in 37 UK hospitals and younger than 72 h at randomisation. Exclusion criteria were presence of a severe congenital anomaly, anticipated enteral fasting for longer than 14 days, or no realistic prospect of survival. Eligible infants were randomly assigned (1:1) to receive either enteral bovine lactoferrin (150 mg/kg per day; maximum 300 mg/day; lactoferrin group) or sucrose (same dose; control group) once daily until 34 weeks' postmenstrual age. Web-based randomisation minimised for recruitment site, gestation (completed weeks), sex, and single versus multifetal pregnancy. Parents, caregivers, and outcome assessors were unaware of group assignment. The primary outcome was microbiologically confirmed or clinically suspected late-onset infection (occurring >72 h after birth), which was assessed in all participants for whom primary outcome data was available by calculating the relative risk ratio with 95% CI between the two groups. The trial is registered with the International Standard Randomised Controlled Trial Number 88261002.
Findings
We recruited 2203 participants between May 7, 2014, and Sept 28, 2017, of whom 1099 were assigned to the lactoferrin group and 1104 to the control group. Four infants had consent withdrawn or unconfirmed, leaving 1098 infants in the lactoferrin group and 1101 in the sucrose group. Primary outcome data for 2182 infants (1093 [99·5%] of 1098 in the lactoferrin group and 1089 [99·0] of 1101 in the control group) were available for inclusion in the modified intention-to-treat analyses. 316 (29%) of 1093 infants in the intervention group acquired a late-onset infection versus 334 (31%) of 1089 in the control group. The risk ratio adjusted for minimisation factors was 0·95 (95% CI 0·86–1·04; p=0·233). During the trial there were 16 serious adverse events for infants in the lactoferrin group and 10 for infants in the control group. Two events in the lactoferrin group (one case of blood in stool and one death after intestinal perforation) were assessed as being possibly related to the trial intervention.
Interpretation
Enteral supplementation with bovine lactoferrin does not reduce the risk of late-onset infection in very preterm infants. These data do not support its routine use to prevent late-onset infection and associated morbidity or mortality in very preterm infants.
Funding
UK National Institute for Health Research Health Technology Assessment programme (10/57/49)
The role of substrate purity and its crystallographic orientation in the defect density of chemical vapor deposition grown monolayer graphene
Defect free mono-layer graphene sheet growth has remained a challenge towards its huge potential applications in electronic and photonic devices. Here, we are reporting about the role of the copper substrate purity and its crystallographic orientation in the quality of the graphene grown using a low pressure chemical vapor deposition technique. Graphene is grown on three different (Cu-I, Cu-II and Cu-III) substrates of different purity under analogous conditions of optimized pre-growth annealing and cleaning processes. Irrespective of the purity level of all the substrates, it is demonstrated that monolayer graphene (I-G'/I-G similar to 4) with different defect density is observed. The amount of defects and the defect density in the three samples is correlated with the different lattice planes of Cu, which are participating during the growth process. The size of the lattice grain advance upon annealing is observed and it is substrate purity dependent. This reveals that graphene growth is favored by either the (111) or the (100) plane or both. It is demonstrated that the substrate purity is extremely accountable for the growth of defect free monolayer graphene for device applications which require ballistic transport properties
LSA system development with sensing for rapidly deployable LTE network
Abstract
Public safety users require radio spectrum for their communication systems. In this study, sensors are proposed as a backup spectrum information source in a rapidly deployed public safety long term evolution (LTE) communication network with licensed shared access (LSA) system. While the LSA system has been well developed, the drawback measures have not been thoroughly investigated from the application point of view. Herein, a collaborative sensing method is suggested for detecting an incumbent spectrum user and for establishing a protection zone around it. Furthermore, methods are developed for combining information from sensors and from an LSA system in a rapidly deployable public safety LTE network. The information from the sensors can be used for verifying incumbent protection and also for finding available spectrum in critical scenarios. The proposed methods give wider spectrum knowledge than just by using repository information or local sensor information
- …