1,684 research outputs found
Aluminium oxide in the optical spectrum of VY Canis Majoris
We report the first identification of the optical bands of the B-X system of
AlO in the red supergiant VY CMa. In addition to TiO, VO, ScO, and YO, which
were recognized in the optical spectrum of the star long time ago, AlO is
another refractory molecule which displays strong emission bands in this
peculiar star. Simulating the bands of AlO, we derive a rotational temperature
of the circumstellar gas of Trot=700K. By resolving individual rotational
components of the bands, we derive the kinematical characteristics of the gas,
finding that the emission is centered at the stellar radial velocity and its
intrinsic width is 13.5 km/s (full width at half maximum). It is the narrowest
emission among all (thermal) features observed in VY CMa so far. The
temperature and line widths suggest that the emission arises in gas located
within ~20 stellar radii, where the outflow is still being accelerated. This
result contradicts equilibrium-chemistry models which predict substantial AlO
abundances only to within a few stellar radii. We argue that non-equilibrium
models involving propagation of shocks are needed to explain the observations.Comment: to appear in A&
New Measurements of the Radio Photosphere of Mira based on Data from the JVLA and ALMA
We present new measurements of the millimeter wavelength continuum emission
from the long period variable Mira ( Ceti) at frequencies of 46 GHz, 96 GHz,
and 229 GHz (~7 mm, 3 mm, and 1 mm) based on observations obtained
with the Jansky Very Large Array (JVLA) and the Atacama Large
Millimeter/submillimeter Array (ALMA). The measured millimeter flux densities
are consistent with a radio photosphere model derived from previous
observations, where flux density, . The stellar disk
is resolved, and the measurements indicate a decrease in the size of the radio
photosphere at higher frequencies, as expected if the opacity decreases at
shorter wavelengths. The shape of the radio photosphere is found to be slightly
elongated, with a flattening of ~10-20%. The data also reveal evidence for
brightness non-uniformities on the surface of Mira at radio wavelengths. Mira's
hot companion, Mira B was detected at all three observed wavelengths, and we
measure a radius for its radio-emitting surface of
cm. The data presented here highlight the power of the JVLA and ALMA for the
study of the atmospheres of evolved stars.Comment: Accepted to ApJ; 27 pages, 7 figure
Trigonometric Parallaxes of Massive Star Forming Regions: G012.88+0.48 and W33
We report trigonometric parallaxes for water masers in the G012.88+0.48
region and in the massive star forming complex W33 (containing G012.68--0.18,
G012.81--0.19, G012.90--0.24, G012.90--0.26), from the Bar and Spiral Structure
Legacy (BeSSeL) survey using the Very Long Baseline Array. The parallax
distances to all these masers are consistent with kpc,
which locates the W33 complex and G012.88+0.48 in the Scutum spiral arm. Our
results show that W33 is a single star forming complex at about two-thirds the
kinematic distance of 3.7 kpc. The luminosity and mass of this region, based on
the kinematic distance, have therefore been overestimated by more than a factor
of two. The spectral types in the star cluster in W33\,Main have to be changed
by 1.5 points to later types.Comment: 9 pages, 11 figures, 2 tables; accepted for publication at A&
Detection of a new methanol maser line with the Kitt Peak 12-m telescope by remote observing from Moscow
A new methanol maser line 6(-1)-5(0)E at 133 GHz was detected with the 12-m
Kitt Peak radio telescope using remote observation mode from Moscow. Moderately
strong, narrow maser lines were found in DR21(OH), DR21-W, OMC-2, M8E, NGC2264,
L379, W33-Met. The masers have similar spectral features in other transitions
of methanol-E at 36 and 84 GHz, and in transitions of methanol-A at 44 and 95
GHz. All these are Class I transitions, and the new masers also belong to Class
I. In two other methanol transitions near 133 GHz, 5(-2)-6(-1)E and
6(2)-7(1)A+, only thermal emission was detected in some sources. Several other
sources with wider lines in the transition 6(-1)-5(0)E also may be masers,
since they do not show any emission at the two other methanol transitons near
133 GHz. These are NGC2071, S231, S255, GGD27, also known as Class I masers.
The ratio of intensities and line widths of the 133 GHz masers and 44 GHz
masers is consistent with the saturated maser model, in which the line
rebroadening with respect to unsaturated masers is suppressed by cross
relaxation due to elastic collisions.Comment: 4 pages, AASTeX text, uses aasms4.sty, 2 Postscript figures, to be
published in Ap
APEX telescope observations of new molecular ions
Hydrides are key ingredients of interstellar chemistry since they are the
initial products of chemical networks that lead to the formation of more
complex molecules. The fundamental rotational transitions of light hydrides
fall into the submillimeter wavelength range. Using the APEX telescope, we
observed the long sought hydrides SH+ and OH+ in absorption against the strong
continuum source Sagittarius B2(M). Both, absorption from Galactic center gas
as well as from diffuse clouds in intervening spiral arms over a large velocity
range is observed. The detected absorption of a continuous velocity range on
the line of sight shows these hydrides to be an abundant component of diffuse
clouds. In addition, we used the strongest submillimeter dust continuum sources
in the inner Galaxy to serve as background candles for a systematic census of
these hydrides in diffuse clouds and massive star forming regions of our Galaxy
and initial results of this survey are presented.Comment: To appear in Spectroscopy of Molecular Ions in the Laboratory and in
Space (SMILES 2010), AIP Conference Proceedings, in pres
- …