2,164 research outputs found

    Study of localization in the quantum sawtooth map emulated on a quantum information processor

    Full text link
    Quantum computers will be unique tools for understanding complex quantum systems. We report an experimental implementation of a sensitive, quantum coherence-dependent localization phenomenon on a quantum information processor (QIP). The localization effect was studied by emulating the dynamics of the quantum sawtooth map in the perturbative regime on a three-qubit QIP. Our results show that the width of the probability distribution in momentum space remained essentially unchanged with successive iterations of the sawtooth map, a result that is consistent with localization. The height of the peak relative to the baseline of the probability distribution did change, a result that is consistent with our QIP being an ensemble of quantum systems with a distribution of errors over the ensemble. We further show that the previously measured distributions of control errors correctly account for the observed changes in the probability distribution.Comment: 20 pages, 9 figure

    Error tolerance in an NMR Implementation of Grover's Fixed-Point Quantum Search Algorithm

    Full text link
    We describe an implementation of Grover's fixed-point quantum search algorithm on a nuclear magnetic resonance (NMR) quantum computer, searching for either one or two matching items in an unsorted database of four items. In this new algorithm the target state (an equally weighted superposition of the matching states) is a fixed point of the recursive search operator, and so the algorithm always moves towards the desired state. The effects of systematic errors in the implementation are briefly explored.Comment: 5 Pages RevTex4 including three figures. Changes made at request of referees; now in press at Phys Rev

    Subsystem Pseudo-pure States

    Full text link
    A critical step in experimental quantum information processing (QIP) is to implement control of quantum systems protected against decoherence via informational encodings, such as quantum error correcting codes, noiseless subsystems and decoherence free subspaces. These encodings lead to the promise of fault tolerant QIP, but they come at the expense of resource overheads. Part of the challenge in studying control over multiple logical qubits, is that QIP test-beds have not had sufficient resources to analyze encodings beyond the simplest ones. The most relevant resources are the number of available qubits and the cost to initialize and control them. Here we demonstrate an encoding of logical information that permits the control over multiple logical qubits without full initialization, an issue that is particularly challenging in liquid state NMR. The method of subsystem pseudo-pure state will allow the study of decoherence control schemes on up to 6 logical qubits using liquid state NMR implementations.Comment: 9 pages, 1 Figur

    Generation and detection of spin-orbit coupled neutron beams

    Full text link
    Spin-orbit coupling of light has come to the fore in nano-optics and plasmonics, and is a key ingredient of topological photonics and chiral quantum optics. We demonstrate a basic tool for incorporating analogous effects into neutron optics: the generation and detection of neutron beams with coupled spin and orbital angular momentum. 3^3He neutron spin-filters are used in conjunction with specifically oriented triangular coils to prepare neutron beams with lattices of spin-orbit correlations, as demonstrated by their spin-dependant intensity profiles. These correlations can be tailored to particular applications, such as neutron studies of topological materials

    Utah State University Department of Music Faculty Voice Recital of Dr. Errik M Hood, Baritone with Dallas K Heaton, Piano and The Utah State University Chamber Singer Under the Direction of Dr. Cory Evans

    Get PDF
    A faculty voice recital featuring Dr. Errik M. Hood, Dallas K. Heaton, and the Utah State University Chamber Singers.https://digitalcommons.usu.edu/music_programs/1092/thumbnail.jp

    Realization of generalized quantum searching using nuclear magnetic resonance

    Full text link
    According to the theoretical results, the quantum searching algorithm can be generalized by replacing the Walsh-Hadamard(W-H) transform by almost any quantum mechanical operation. We have implemented the generalized algorithm using nuclear magnetic resonance techniques with a solution of chloroform molecules. Experimental results show the good agreement between theory and experiment.Comment: 11 pages,3 figure. Accepted by Phys. Rev. A. Scheduled Issue: 01 Mar 200

    De novo transcriptome assembly of the Southern Ocean copepod Rhincalanus gigas sheds light on developmental changes in gene expression

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Berger, C. A., Steinberg, D. K., Copley, N. J., & Tarrant, A. M. De novo transcriptome assembly of the Southern Ocean copepod Rhincalanus gigas sheds light on developmental changes in gene expression. Marine Genomics, (2021): 100835, https://doi.org/10.1016/j.margen.2021.100835.Copepods are small crustaceans that dominate most zooplankton communities in terms of both abundance and biomass. In the polar oceans, a subset of large lipid-storing copepods occupy central positions in the food web because of their important role in linking phytoplankton and microzooplankton with higher trophic levels. In this paper, we generated a high-quality de novo transcriptome for Rhincalanus gigas, the largest—and among the most abundant—of the Southern Ocean copepods. We then conducted transcriptional profiling to characterize the developmental transition between late-stage juveniles and adult females. We found that juvenile R. gigas substantially upregulate lipid synthesis and glycolysis pathways relative to females, as part of a developmental gene expression program that also implicates processes such as muscle growth, chitin formation, and ion transport. This study provides the first transcriptional profile of a developmental transition within Rhincalanus gigas or any endemic Southern Ocean copepod, thereby extending our understanding of copepod molecular physiology.Funding for this project was provided by the National Science Foundation (Grants OPP-1746087 to AMT and OPP-1440435 to DKS)
    • …
    corecore