59 research outputs found
Piecewise linear transformation in diffusive flux discretization
To ensure the discrete maximum principle or solution positivity in finite
volume schemes, diffusive flux is sometimes discretized as a conical
combination of finite differences. Such a combination may be impossible to
construct along material discontinuities using only cell concentration values.
This is often resolved by introducing auxiliary node, edge, or face
concentration values that are explicitly interpolated from the surrounding cell
concentrations. We propose to discretize the diffusive flux after applying a
local piecewise linear coordinate transformation that effectively removes the
discontinuities. The resulting scheme does not need any auxiliary
concentrations and is therefore remarkably simpler, while being second-order
accurate under the assumption that the structure of the domain is locally
layered.Comment: 11 pages, 1 figures, preprint submitted to Journal of Computational
Physic
A Comparison of Consistent Discretizations for Elliptic Problems on Polyhedral Grids
In this work, we review a set of consistent discretizations for second-order elliptic equations, and compare and contrast them with respect to accuracy, monotonicity, and factors affecting their computational cost (degrees of freedom, sparsity, and condition numbers). Our comparisons include the linear and nonlinear TPFA method, multipoint flux-approximation (MPFA-O), mimetic methods, and virtual element methods. We focus on incompressible flow and study the effects of deformed cell geometries and anisotropic permeability.acceptedVersio
Recommended from our members
Mimetic finite difference method for the stokes problem on polygonal meshes
Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure
Mathematical Formulation Requirements and Specifications for the Process Models
The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments naturally generates a suite of conceptual models that span a range of process complexity, potentially coupling hydrological, biogeochemical, geomechanical, and thermal processes. The Platform will use ensembles of these simulations to quantify the associated uncertainty, sensitivity, and risk. The Process Models task within the HPC Simulator focuses on the mathematical descriptions of the relevant physical processes
- …