6 research outputs found

    Modelling the Influence of Foot-and-Mouth Disease Vaccine Antigen Stability and Dose on the Bovine Immune Response

    Get PDF
    Foot and mouth disease virus causes a livestock disease of significant global socio-economic importance. Advances in its control and eradication depend critically on improvements in vaccine efficacy, which can be best achieved by better understanding the complex within-host immunodynamic response to inoculation. We present a detailed and empirically parametrised dynamical mathematical model of the hypothesised immune response in cattle, and explore its behaviour with reference to a variety of experimental observations relating to foot and mouth immunology. The model system is able to qualitatively account for the observed responses during in-vivo experiments, and we use it to gain insight into the incompletely understood effect of single and repeat inoculations of differing dosage using vaccine formulations of different structural stability

    Mathematical modelling of blood circulation in the liver

    No full text
    Blood flow in the liver has several unique features compared with other organs in the body. The liver is made up of functional units called lobules, and blood flows across the lobules from the portal tracts to the central veins travelling through small vessels called sinusoids. Vascular septae are vessels running between neighboring portal tracts. Rather than all the blood entering the lobule directly from the portal tracts, some goes from the portal tracts into the vascular septae, and is then distributed into the lobule. In this paper we present a model of the flow in a lobule. We consider an idealized geometry and treat the sinusoids as a porous medium. In the model the portal tracts and vascular septae act as sources of flux of blood and the central veins as sinks. Our results suggest that the vascular septae decrease extreme values of the pressure that could be achieved near to the portal tracts and result in a flow that could distribute nutrients more evenly to all the functional cells of the liver. We conclude with a discussion of extensions of the model

    Mathematical modeling of the circulation in the liver lobule

    No full text
    In this paper, we develop a mathematical model of blood circulation in the liver lobule. We aim to find the pressure and flux distributions within a liver lobule. We also investigate the effects of changes in pressure that occur following a resection of part of the liver, which often leads to high pressure in the portal vein. The liver can be divided into functional units called lobules. Each lobule has a hexagonal cross-section, and we assume that its longitudinal extent is large compared with its width. We consider an infinite lattice of identical lobules and study the two-dimensional flow in the hexagonal cross-sections. We model the sinusoidal space as a porous medium, with blood entering from the portal tracts (located at each of the vertices of the cross-section of the lobule) and exiting via the centrilobular vein (located in the center of the cross-section). We first develop and solve an idealized mathematical model, treating the porous medium as rigid and isotropic and blood as a Newtonian fluid. The pressure drop across the lobule and the flux of blood through the lobule are proportional to one another. In spite of its simplicity, the model gives insight into the real pressure and velocity distribution in the lobule. We then consider three modifications of the model that are designed to make it more realistic. In the first modification, we account for the fact that the sinusoids tend to be preferentially aligned in the direction of the centrilobular vein by considering an anisotropic porous medium. In the second, we account more accurately for the true behavior of the blood by using a shear-thinning model. We show that both these modifications have a small quantitative effect on the behavior but no qualitative effect. The motivation for the final modification is to understand what happens either after a partial resection of the liver or after an implantation of a liver of small size. In these cases, the pressure is observed to rise significantly, which could cause deformation of the tissue. We show that including the effects of tissue compliance in the model means that the total blood flow increases more than linearly as the pressure rises

    Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique

    No full text
    Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma
    corecore