26,025 research outputs found

    Magnetic field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at v=5/2

    Full text link
    We show that the resistance of the v=5/2 quantum Hall state, confined to an interferometer, oscillates with magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of different sizes, resistance oscillations at v=7/3 and integer filling factors have the magnetic field period expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3,3,1) state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-type non-Abelian state there would be a rapid oscillation associated with the "even-odd effect" and a slower one associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of the quasiparticle braiding statistics. Our measurements at v=5/2 are consistent with the latter.Comment: 10 pages, 8 figures, includes Supplemental Material

    Evidence for A Two-dimensional Quantum Wigner Solid in Zero Magnetic Field

    Full text link
    We report the first experimental observation of a characteristic nonlinear threshold behavior from dc dynamical response as an evidence for a Wigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. However, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to a quantum process

    Independently contacted two-dimensional electron systems in double quantum wells

    Get PDF
    A new technique for creating independent ohmic contacts to closely spaced two-dimensional electron systems in double quantum well (DQW) structures is described. Without use of shallow diffusion or precisely controlled etching methods, the present technique results in low-resistance contacts which can be electrostatically switched between the two-conducting layers. The method is demonstrated with a DQW consisting of two 200 Ã… GaAs quantum wells separated by a 175 Ã… AlGaAs barrier. A wide variety of experiments on Coulomb and tunnel-coupled 2D electron systems is now accessible
    • …
    corecore