2,470 research outputs found
Jahn-Teller distortions and phase separation in doped manganites
A "minimal model" of the Kondo-lattice type is used to describe a competition
between the localization and metallicity in doped manganites and related
magnetic oxides with Jahn-Teller ions. It is shown that the number of itinerant
charge carriers can be significantly lower than that implied by the doping
level x. A strong tendency to the phase separation is demonstrated for a wide
range of intermediate doping concentrations vanishing at low and high doping.
The phase diagram of the model in the x-T plane is constructed. At low
temperatures, the system is in a state with a long-range magnetic order:
antiferromagnetic (AF), ferromagnetic (FM), or AF-FM phase separated (PS)
state. At high temperatures, there can exist two types of the paramagnetic (PM)
state with zero and nonzero density of the itinerant electrons. In the
intermediate temperature range, the phase diagram includes different kinds of
the PS states: AF-FM, FM-PM, and PM with different content of itinerant
electrons. The applied magnetic field changes the phase diagram favoring the FM
ordering. It is shown that the variation of temperature or magnetic field can
induce the metal-insulator transition in a certain range of doping levels.Comment: 14 pages, 7 figures, submitted to Phys. Rev. B.; v.2 contains the
changes introduced according to comments of the PRB Referees; in v. 3, some
misprints are correcte
Spontaneous Currents in Spinless Fermion Lattice Models at the Strong-Coupling Limit
What kind of lattice Hamiltonian manifestly has an ordered state with
spontaneous orbital currents? We consider interacting spinless fermions on an
array of square plaquettes, connected by weak hopping; the array geometry may
be a 2 x 2L ladder, a 2 x 2 x 2L "tube", or a 2L x 2L square grid. At half
filling, we derive an effective Hamiltonian in terms of pseudospins, of which
one component represents orbital currents, and find the conditions sufficient
for orbital current long-range order. We consider spinfull variants of the
aforesaid spinless models and make contact with other spinfull models in the
literature purported to possess spontaneous currents.Comment: added two new references following recent communicatio
The evolution with temperature of magnetic polaron state in an antiferromagnetic chain with impurities
The thermal behavior of a one-dimensional antiferromagnetic chain doped by
donor impurities was analyzed. The ground state of such a chain corresponds to
the formation of a set of ferromagnetically correlated regions localized near
impurities (bound magnetic polarons). At finite temperatures, the magnetic
structure of the chain was calculated simultaneously with the wave function of
a conduction electron bound by an impurity. The calculations were performed
using an approximate variational method and a Monte Carlo simulation. Both
these methods give similar results. The analysis of the temperature dependence
of correlation functions for neighboring local spins demonstrated that the
ferromagnetic correlations inside a magnetic polaron remain significant even
above the N\'eel temperature implying rather high stability of the
magnetic polaron state. In the case when the electron-impurity coupling energy
is not too high (for lower that the electron hopping integral ), the
magnetic polaron could be depinned from impurity retaining its magnetic
structure. Such a depinning occurs at temperatures of the order of . At
even higher temperatures () magnetic polarons disappear and the chain
becomes completely disordered.Comment: 17 pages, 5 figures, RevTe
Elementary excitations of the symmetric spin-orbital model: The XY limit
The elementary excitations of the 1D, symmetric, spin-orbital model are
investigated by studying two anisotropic versions of the model, the pure XY and
the dimerized XXZ case, with analytical and numerical methods. While they
preserve the symmetry between spin and orbital degrees of freedom, these models
allow for a simple and transparent picture of the low--lying excitations: In
the pure XY case, a phase separation takes place between two phases with
free--fermion like, gapless excitations, while in the dimerized case, the
low-energy effective Hamiltonian reduces to the 1D Ising model with gapped
excitations. In both cases, all the elementary excitations involve simultaneous
flips of the spin and orbital degrees of freedom, a clear indication of the
breakdown of the traditional mean-field theory.Comment: Revtex, two figure
Effect of electron-lattice interaction on the phase separation in strongly correlated electron systems with two types of charge carriers
The effect of electron-lattice interaction is studied for a strongly
correlated electron system described by the two-band Hubbard model. A two-fold
effect of electron-lattice interaction is taken into account: in non-diagonal
terms, it changes the effective bandwidth, whereas in diagonal terms, it shifts
the positions of the bands and the chemical potential. It is shown that this
interaction significantly affects the doping range corresponding to the
electronic phase separation and can even lead to a jump-like transition between
states with different values of strains.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Thermodynamics of the one-dimensional SU(4) symmetric spin-orbital model
The ground state properties and the thermodynamics of the one-dimensional
SU(4) symmetric spin system with orbital degeneracy are investigated using the
quantum Monte Carlo loop algorithm. The spin-spin correlation functions exhibit
a 4-site periodicity, and their low temperature behavior is controlled by two
correlation lengths that diverge like the inverse temperature, while the
entropy is linear in temperature and its slope is consistent with three gapless
modes of velocity . The physical implications of these results are
discussed.Comment: 4 pages, 4 figures, RevTe
Origin of Jahn-Teller distortion and orbital-order in LaMnO3
The origin of the cooperative Jahn-Teller distortion and orbital-order in
LaMnO3 is central to the physics of the manganites. The question is complicated
by the simultaneous presence of tetragonal and GdFeO3-type distortions and the
strong Hund's rule coupling between e_g and t_2g electrons. To clarify the
situation we calculate the transition temperature for the Kugel-Khomskii
superexchange mechanism by using the local density approximation+dynamical
mean-field method, and disentangle the effects of super-exchange from those of
lattice distortions. We find that super-exchange alone would yield T_KK=650 K.
The tetragonal and GdFeO3-type distortions, however, reduce T_KK to 550 K. Thus
electron-phonon coupling is essential to explain the persistence of local
Jahn-Teller distortions to at least 1150 K and to reproduce the occupied
orbital deduced from neutron scattering.Comment: 4 pages, 3 figures; published version (minor changes
- …