8,118 research outputs found

    Phototrophic Fe(II) oxidation in an atmosphere of H_2: implications for Archean banded iron formations

    Get PDF
    The effect of hydrogen on the rate of phototrophic Fe(II) oxidation by two species of purple bacteria was measured at two different bicarbonate concentrations. Hydrogen slowed Fe(II) oxidation to varying degrees depending on the bicarbonate concentration, but even the slowest rate of Fe(II) oxidation remained on the same order of magnitude as that estimated to have been necessary to deposit the Hamersley banded iron formations. Given the hydrogen and bicarbonate concentrations inferred for the Archean, our data suggest that Fe(II) phototrophy could have been a viable process at this time

    Lamb Wave Mode Selection for Increased Sensitivity ot Interfacial Weaknesses of Adhesive Bonds

    Get PDF
    Interface quality between layers in a layered structure is critical in fracture and fatigue analysis. A theoretical and quantitative solution to the problem from a NDE point of view would be desirable in both manufacturing and for in-service investigation of a variety of different structures. For example a great need exists to develop a reliable and efficient inspection program of adhesive bond delamination and interfacial weakness detection in aging aircraft noting that the bond degradation generally preceeds cracking in the aluminum skin, starting at the rivet holes

    VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning

    Full text link
    © 1989-2012 IEEE. In this paper, we propose a simple variant of the original SVRG, called variance reduced stochastic gradient descent (VR-SGD). Unlike the choices of snapshot and starting points in SVRG and its proximal variant, Prox-SVRG, the two vectors of VR-SGD are set to the average and last iterate of the previous epoch, respectively. The settings allow us to use much larger learning rates, and also make our convergence analysis more challenging. We also design two different update rules for smooth and non-smooth objective functions, respectively, which means that VR-SGD can tackle non-smooth and/or non-strongly convex problems directly without any reduction techniques. Moreover, we analyze the convergence properties of VR-SGD for strongly convex problems, which show that VR-SGD attains linear convergence. Different from most algorithms that have no convergence guarantees for non-strongly convex problems, we also provide the convergence guarantees of VR-SGD for this case, and empirically verify that VR-SGD with varying learning rates achieves similar performance to its momentum accelerated variant that has the optimal convergence rate O(1/T2O(1/T2). Finally, we apply VR-SGD to solve various machine learning problems, such as convex and non-convex empirical risk minimization, and leading eigenvalue computation. Experimental results show that VR-SGD converges significantly faster than SVRG and Prox-SVRG, and usually outperforms state-of-the-art accelerated methods, e.g., Katyusha

    Approximate perturbed direct homotopy reduction method: infinite series reductions to two perturbed mKdV equations

    Full text link
    An approximate perturbed direct homotopy reduction method is proposed and applied to two perturbed modified Korteweg-de Vries (mKdV) equations with fourth order dispersion and second order dissipation. The similarity reduction equations are derived to arbitrary orders. The method is valid not only for single soliton solution but also for the Painlev\'e II waves and periodic waves expressed by Jacobi elliptic functions for both fourth order dispersion and second order dissipation. The method is valid also for strong perturbations.Comment: 8 pages, 1 figur

    Electron Microscopy and Optical Characterization of Cadmium Sulphide Nanocrystals Deposited on the Patterned Surface of Diatom Biosilica

    Get PDF
    Intricately patterned biosilica obtained from the shell of unicellular algae called diatoms serve as novel templates for fabrication of optoelectronic nanostructures. In this study, the surface of diatom frustules that possessed hierarchical architecture ordered at the micro and nanoscale was coated with a nanostructured polycrystalline cadmium sulphide (CdS) thin film using a chemical bath deposition technique. The CdS thin film was composed of spherical nanoparticles with a diameter of about 75 nm. The CdS nanoparticle thin film imparted new photoluminescent properties to the intricately patterned diatom nanostructure. The imparted photoluminescent properties were dependent on the CdS coverage onto the frustules surface. The intrinsic photoluminescent properties of the frustules were strongly quenched by the deposited CdS. The origin of PL spectra was discussed on the basis of the band theory and native defects

    Revisiting vertical structure of neutrino-dominated accretion disks: Bernoulli parameter, neutrino trapping and other distributions

    Full text link
    We revisit the vertical structure of neutrino dominated accretion flows (NDAFs) in spherical coordinates with a new boundary condition based on the mechanical equilibrium. The solutions show that NDAF is significantly thick. The Bernoulli parameter and neutrino trapping are determined by the mass accretion rate and the viscosity parameter. According to the distribution of the Bernoulli parameter, the possible outflow may appear in the outer region of the disk. The neutrino trapping can essentially affect the neutrino radiation luminosity. The vertical structure of NDAF is like a "sandwich", and the multilayer accretion may account for the flares in gamma-ray bursts.Comment: 7 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc
    • …
    corecore