13 research outputs found

    Recoil velocity at 2PN order for spinning black hole binaries

    Full text link
    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at 2PN order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely next-to-leading order spin-orbit terms at 1.5 PN order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasi-circular orbits, we integrate the linear momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to about a factor 3 with respect to the leading-order PN prediction. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasi-circular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mik\'oczi, Vas\'uth and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka and Sasaki obtained in the context of black hole perturbation theory.Comment: 28 pages (PRD format), 1 figure, reference added, version published in PRD, except that the PRD version contains a sign error: the sign of the RHS of Eqs.(4.26) and (4.27) is wrong; it has been corrected in this replacemen

    Hamiltonian of a spinning test-particle in curved spacetime

    Full text link
    Using a Legendre transformation, we compute the unconstrained Hamiltonian of a spinning test-particle in a curved spacetime at linear order in the particle spin. The equations of motion of this unconstrained Hamiltonian coincide with the Mathisson-Papapetrou-Pirani equations. We then use the formalism of Dirac brackets to derive the constrained Hamiltonian and the corresponding phase-space algebra in the Newton-Wigner spin supplementary condition (SSC), suitably generalized to curved spacetime, and find that the phase-space algebra (q,p,S) is canonical at linear order in the particle spin. We provide explicit expressions for this Hamiltonian in a spherically symmetric spacetime, both in isotropic and spherical coordinates, and in the Kerr spacetime in Boyer-Lindquist coordinates. Furthermore, we find that our Hamiltonian, when expanded in Post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner (ADM) canonical Hamiltonian computed in PN theory in the test-particle limit. Notably, we recover the known spin-orbit couplings through 2.5PN order and the spin-spin couplings of type S_Kerr S (and S_Kerr^2) through 3PN order, S_Kerr being the spin of the Kerr spacetime. Our method allows one to compute the PN Hamiltonian at any order, in the test-particle limit and at linear order in the particle spin. As an application we compute it at 3.5PN order.Comment: Corrected typo in the ADM Hamiltonian at 3.5 PN order (eq. 6.20

    Electromagnetic self-forces and generalized Killing fields

    Full text link
    Building upon previous results in scalar field theory, a formalism is developed that uses generalized Killing fields to understand the behavior of extended charges interacting with their own electromagnetic fields. New notions of effective linear and angular momenta are identified, and their evolution equations are derived exactly in arbitrary (but fixed) curved spacetimes. A slightly modified form of the Detweiler-Whiting axiom that a charge's motion should only be influenced by the so-called "regular" component of its self-field is shown to follow very easily. It is exact in some interesting cases, and approximate in most others. Explicit equations describing the center-of-mass motion, spin angular momentum, and changes in mass of a small charge are also derived in a particular limit. The chosen approximations -- although standard -- incorporate dipole and spin forces that do not appear in the traditional Abraham-Lorentz-Dirac or Dewitt-Brehme equations. They have, however, been previously identified in the test body limit.Comment: 20 pages, minor typos correcte

    Highly relativistic spinning particle in the Schwarzschild field: Circular and other orbits

    Full text link
    The Mathisson-Papapetrou equations in the Schwarzschild background both at Mathisson-Pirani and Tulczyjew-Dixon supplementary condition are considered. The region of existence of highly relativistic circular orbits of a spinning particle in this background and dependence of the particle's orbital velocity on its spin and radial coordinate are investigated. It is shown that in contrast to the highly relativistic circular orbits of a spinless particle, which exist only for r=1.5rg(1+δ)r=1.5 r_g(1+\delta), 0<δ10<\delta \ll 1, the corresponding orbits of a spinning particle are allowed in a wider space region, and the dimension of this region significantly depends on the supplementary condition. At the Mathisson-Pirani condition new numerical results which describe some typical cases of non-circular highly relativistic orbits of a spinning particle starting from r>1.5rgr>1.5 r_g are presented.Comment: 10 pages, 11 figure

    Spinning particles in Schwarzschild-de Sitter space-time

    Full text link
    After considering the reference case of the motion of spinning test bodies in the equatorial plane of the Schwarzschild space-time, we generalize the results to the case of the motion of a spinning particle in the equatorial plane of the Schwarzschild-de Sitter space-time. Specifically, we obtain the loci of turning points of the particle in this plane. We show that the cosmological constant affect the particle motion when the particle distance from the black hole is of the order of the inverse square root of the cosmological constant.Comment: 8 pages, 5 eps figures, submitted to Gen.Rel.Gra

    Stability of circular orbits of spinning particles in Schwarzschild-like space-times

    Full text link
    Circular orbits of spinning test particles and their stability in Schwarzschild-like backgrounds are investigated. For these space-times the equations of motion admit solutions representing circular orbits with particles spins being constant and normal to the plane of orbits. For the de Sitter background the orbits are always stable with particle velocity and momentum being co-linear along them. The world-line deviation equations for particles of the same spin-to-mass ratios are solved and the resulting deviation vectors are used to study the stability of orbits. It is shown that the orbits are stable against radial perturbations. The general criterion for stability against normal perturbations is obtained. Explicit calculations are performed in the case of the Schwarzschild space-time leading to the conclusion that the orbits are stable.Comment: eps figures, submitted to General Relativity and Gravitatio

    Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds

    Full text link
    A new representation, which does not contain the third-order derivatives of the coordinates, of the exact Mathisson-Papapetrou-Dixon equations, describing the motion of a spinning test particle, is obtained under the assumption of the Mathisson-Pirani condition in a Kerr background. For this purpose the integrals of energy and angular momentum of the spinning particle as well as a differential relationship following from the Mathisson-Papapetrou-Dixon equations are used. The form of these equations is adapted for their computer integration with the aim to investigate the influence of the spin-curvature interaction on the particle's behavior in the gravitational field without restrictions on its velocity and spin orientation. Some numerical examples for a Schwarzschild background are presented.Comment: 21 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1105.240

    Spin and quadrupole contributions to the motion of astrophysical binaries

    Full text link
    Compact objects in general relativity approximately move along geodesics of spacetime. It is shown that the corrections to geodesic motion due to spin (dipole), quadrupole, and higher multipoles can be modeled by an extension of the point mass action. The quadrupole contributions are discussed in detail for astrophysical objects like neutron stars or black holes. Implications for binaries are analyzed for a small mass ratio situation. There quadrupole effects can encode information about the internal structure of the compact object, e.g., in principle they allow a distinction between black holes and neutron stars, and also different equations of state for the latter. Furthermore, a connection between the relativistic oscillation modes of the object and a dynamical quadrupole evolution is established.Comment: 43 pages. Proceedings of the 524. WE-Heraeus-Seminar "Equations of Motion in Relativistic Gravity". v2: fixed reference. v3: corrected typos in eqs. (1), (57), (85

    Center of mass, spin supplementary conditions, and the momentum of spinning particles

    Full text link
    We discuss the problem of defining the center of mass in general relativity and the so-called spin supplementary condition. The different spin conditions in the literature, their physical significance, and the momentum-velocity relation for each of them are analyzed in depth. The reason for the non-parallelism between the velocity and the momentum, and the concept of "hidden momentum", are dissected. It is argued that the different solutions allowed by the different spin conditions are equally valid descriptions for the motion of a given test body, and their equivalence is shown to dipole order in curved spacetime. These different descriptions are compared in simple examples.Comment: 45 pages, 7 figures. Some minor improvements, typos fixed, signs in some expressions corrected. Matches the published version. Published as part of the book "Equations of Motion in Relativistic Gravity", D. Puetzfeld et al. (eds.), Fundamental Theories of Physics 179, Springer, 201
    corecore