41 research outputs found
Tumor Associated Macrophages Protect Colon Cancer Cells from TRAIL-Induced Apoptosis through IL-1β- Dependent Stabilization of Snail in Tumor Cells
We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi) and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3), a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3) halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3) sensitizes tumor cells to TRAIL-induced apoptosis, suggesting that the therapeutic efficacy of TRAIL could be augmented by this readily available chemopreventive agent
HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a variety of tumour cells through activation of TRAIL-R1 and TRAIL-R2 death signalling receptors. Here, we describe the characterisation and activity of HGS-ETR1, the first fully human, agonistic TRAIL-R1 mAb that is being developed as an antitumour therapeutic agent. HGS-ETR1 showed specific binding to TRAIL-R1 receptor. HGS-ETR1 reduced the viability of multiple types of tumour cells in vitro, and induced activation of caspase 8, Bid, caspase 9, caspase 3, and cleavage of PARP, indicating activation of TRAIL-R1 alone was sufficient to induce both extrinsic and intrinsic apoptotic pathways. Treatment of cell lines in vitro with HGS-ETR1 enhanced the cytotoxicity of chemotherapeutic agents (camptothecin, cisplatin, carboplatin, or 5-fluorouracil) even in tumour cell lines that were not sensitive to HGS-ETR1 alone. In vivo administration of HGS-ETR1 resulted in rapid tumour regression or repression of tumour growth in pre-established colon, non-small-cell lung, and renal tumours in xenograft models. Combination of HGS-ETR1 with chemotherapeutic agents (topotecan, 5-fluorouracil, and irinotecan) in three independent colon cancer xenograft models resulted in an enhanced antitumour efficacy compared to either agent alone. Pharmacokinetic studies in the mouse following intravenous injection showed that HGS-ETR1 serum concentrations were biphasic with a terminal half-life of 6.9–8.7 days and a steady-state volume of distribution of approximately 60 ml kg−1. Clearance was 3.6–5.7 ml−1 day−1 kg−1. These data suggest that HGS-ETR1 is a specific and potent antitumour agent with favourable pharmacokinetic characteristics and the potential to provide therapeutic benefit for a broad range of human malignancies
Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus
Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies
Effectiveness and tolerability of second-line therapy with vildagliptin vs. other oral agents in type 2 diabetes: a real-life worldwide observational study (EDGE).
AIM
Real-life studies are needed to confirm the clinical relevance of findings from randomised controlled trials (RCTs). This study aimed to assess the effectiveness and tolerability of vildagliptin add-on vs. other oral antihyperglycaemic drugs (OADs) added to OAD monotherapy in a real-life setting, and to explore the advantages and limitations of large-scale 'pragmatic' trials.
METHODS
EDGE was a prospective, 1-year, worldwide, real-life observational study in which 2957 physicians reported on the effects of second-line OADs in 45,868 patients with T2DM not reaching glycaemic targets with monotherapy. Physicians could add any OAD, and patients entered either vildagliptin or (pooled) comparator cohort. The primary effectiveness and tolerability end-point (PEP) evaluated proportions of patients decreasing HbA(1c) > 0.3%, without hypoglycaemia, weight gain, peripheral oedema or gastrointestinal side effects. The most clinically relevant secondary end-point (SEP 3) was attainment of end-point HbA(1c) < 7% without hypoglycaemia or ≥ 3% increase in body weight.
RESULTS
In this large group of T2DM patients, a second OAD was added at mean HbA(1c) of 8.2 ± 1.3%, with no baseline HbA(1c) difference between cohorts. Second-line OAD therapy attained the PEP in the majority of patients, with higher attainment in those prescribed a vildagliptin-based regimen. The adjusted odds ratio was 1.49 (95% CI: 1.42, 1.55; p < 0.001). In patients with baseline HbA(1c) ≥ 7%, SEP 3 was achieved by 35% of patients on a vildagliptin-based combination and by 23% of those receiving comparator combinations. The adjusted odds ratio was 1.96 (95% CI: 1.85, 2.07; p < 0.001). Safety events were reported infrequently and safety profiles of vildagliptin and other OADs were consistent with previous data.
CONCLUSION
EDGE demonstrates that in a 'real-life' setting, vildagliptin as second OAD can lower HbA(1c) to target without well-recognised OAD side effects, more frequently than comparator OADs. In addition, EDGE illustrates that conducting large-scale, prospective, real-life studies poses challenges but yields valuable clinical information complementary to RCTs