1,373 research outputs found

    Electrostatic pair creation and recombination in quantum plasmas

    Full text link
    The collective production of electron-positron pairs by electrostatic waves in quantum plasmas is investigated. In particular, a semi-classical governing set of equation for a self-consistent treatment of pair creation by the Schwinger mechanism in a quantum plasma is derived.Comment: 4 pages, 3 figures, to appear in JETP Letter

    Biwhitening Reveals the Rank of a Count Matrix

    Full text link
    Estimating the rank of a corrupted data matrix is an important task in data analysis, most notably for choosing the number of components in PCA. Significant progress on this task was achieved using random matrix theory by characterizing the spectral properties of large noise matrices. However, utilizing such tools is not straightforward when the data matrix consists of count random variables, e.g., Poisson, in which case the noise can be heteroskedastic with an unknown variance in each entry. In this work, we consider a Poisson random matrix with independent entries, and propose a simple procedure termed \textit{biwhitening} for estimating the rank of the underlying signal matrix (i.e., the Poisson parameter matrix) without any prior knowledge. Our approach is based on the key observation that one can scale the rows and columns of the data matrix simultaneously so that the spectrum of the corresponding noise agrees with the standard Marchenko-Pastur (MP) law, justifying the use of the MP upper edge as a threshold for rank selection. Importantly, the required scaling factors can be estimated directly from the observations by solving a matrix scaling problem via the Sinkhorn-Knopp algorithm. Aside from the Poisson, our approach is extended to families of distributions that satisfy a quadratic relation between the mean and the variance, such as the generalized Poisson, binomial, negative binomial, gamma, and many others. This quadratic relation can also account for missing entries in the data. We conduct numerical experiments that corroborate our theoretical findings, and showcase the advantage of our approach for rank estimation in challenging regimes. Furthermore, we demonstrate the favorable performance of our approach on several real datasets of single-cell RNA sequencing (scRNA-seq), High-Throughput Chromosome Conformation Capture (Hi-C), and document topic modeling

    Interleukin-1: The Pros and Cons of Its Clinical Relevance

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75148/1/j.1525-1594.1988.tb02759.x.pd

    Pair creation: back-reactions and damping

    Get PDF
    We solve the quantum Vlasov equation for fermions and bosons, incorporating spontaneous pair creation in the presence of back-reactions and collisions. Pair creation is initiated by an external impulse field and the source term is non-Markovian. A simultaneous solution of Maxwell's equation in the presence of feedback yields an internal current and electric field that exhibit plasma oscillations with a period tau_pl. Allowing for collisions, these oscillations are damped on a time-scale, tau_r, determined by the collision frequency. Plasma oscillations cannot affect the early stages of the formation of a quark-gluon plasma unless tau_r >> tau_pl and tau_pl approx. 1/Lambda_QCD approx 1 fm/c.Comment: 16 pages, 6 figure, REVTEX, epsfig.st

    Dileptons from Disoriented Chiral Condensates

    Get PDF
    Disoriented chiral condensates or long wavelength pionic oscillations and their interaction with the thermal environment can be a significant source of dileptons. We calculate the yield of such dilepton production within the linear sigma model, both in a quantal mean-field treatment and in a semi-classical approximation. We then illustrate the basic features of the dilepton spectrum in a schematic model. We find that dilepton yield with invariant mass near and below 2mπ2m_{\pi} due to the soft pion modes can be up to two orders of magnitude larger than the corresponding equilibrium yield.Comment: 22 pages, 8 figures, uses epsf-styl

    Schwinger Mechanism for Gluon Pair Production in the Presence of Arbitrary Time Dependent Chromo-Electric Field

    Full text link
    We study Schwinger mechanism for gluon pair production in the presence of arbitrary time-dependent chromo-electric background field Ea(t)E^a(t) with arbitrary color index aa=1,2,...8 in SU(3) by directly evaluating the path integral. We obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum dWd4xd2pT\frac{dW}{d^4x d^2p_T} from arbitrary Ea(t)E^a(t). We show that the tadpole (or single gluon) effective action does not contribute to the non-perturbative gluon pair production rate dWd4xd2pT\frac{dW}{d^4x d^2p_T}. We find that the exact result for non-perturbative gluon pair production is independent of all the time derivatives dnEa(t)dtn\frac{d^nE^a(t)}{dt^n} where n=1,2,....n=1,2,....\infty and has the same functional dependence on two casimir invariants [Ea(t)Ea(t)][E^a(t)E^a(t)] and [dabcEa(t)Eb(t)Ec(t)]2[d_{abc}E^a(t)E^b(t)E^c(t)]^2 as the constant chromo-electric field EaE^a result with the replacement: EaEa(t)E^a \to E^a(t). This result may be relevant to study the production of a non-perturbative quark-gluon plasma at RHIC and LHC.Comment: 13 pages latex, Published in European Physical Journal

    A kinetic approach to eta' production from a CP-odd phase

    Full text link
    The production of (eta,eta')- mesons during the decay of a CP-odd phase is studied within an evolution operator approach. We derive a quantum kinetic equation starting from the Witten-DiVecchia-Veneziano Lagrangian for pseudoscalar mesons containing a U_A(1) symmetry breaking term. The non-linear vacuum mean field for the flavour singlet pseudoscalar meson is treated as a classical, self-interacting background field with fluctuations assumed to be small. The numerical solution provides the time evolution of momentum distribution function of produced eta'- mesons after a quench at the deconfinement phase transition. We show that the time evolution of the momentum distribution of the produced mesons depend strongly on the shape of the effective potential at the end of the quench, exhibiting either parametric or tachyonic resonances. Quantum statistical effects are essential and lead to a pronounced Bose enhancement of the low momentum states.Comment: 10 pages, latex, epsfig, 6 figure

    Surmising synchrony of sound and sight: Factors explaining variance of audiovisual integration in hurdling, tap dancing and drumming.

    Get PDF
    Auditory and visual percepts are integrated even when they are not perfectly temporally aligned with each other, especially when the visual signal precedes the auditory signal. This window of temporal integration for asynchronous audiovisual stimuli is relatively well examined in the case of speech, while other natural action-induced sounds have been widely neglected. Here, we studied the detection of audiovisual asynchrony in three different whole-body actions with natural action-induced sounds-hurdling, tap dancing and drumming. In Study 1, we examined whether audiovisual asynchrony detection, assessed by a simultaneity judgment task, differs as a function of sound production intentionality. Based on previous findings, we expected that auditory and visual signals should be integrated over a wider temporal window for actions creating sounds intentionally (tap dancing), compared to actions creating sounds incidentally (hurdling). While percentages of perceived synchrony differed in the expected way, we identified two further factors, namely high event density and low rhythmicity, to induce higher synchrony ratings as well. Therefore, we systematically varied event density and rhythmicity in Study 2, this time using drumming stimuli to exert full control over these variables, and the same simultaneity judgment tasks. Results suggest that high event density leads to a bias to integrate rather than segregate auditory and visual signals, even at relatively large asynchronies. Rhythmicity had a similar, albeit weaker effect, when event density was low. Our findings demonstrate that shorter asynchronies and visual-first asynchronies lead to higher synchrony ratings of whole-body action, pointing to clear parallels with audiovisual integration in speech perception. Overconfidence in the naturally expected, that is, synchrony of sound and sight, was stronger for intentional (vs. incidental) sound production and for movements with high (vs. low) rhythmicity, presumably because both encourage predictive processes. In contrast, high event density appears to increase synchronicity judgments simply because it makes the detection of audiovisual asynchrony more difficult. More studies using real-life audiovisual stimuli with varying event densities and rhythmicities are needed to fully uncover the general mechanisms of audiovisual integration

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte
    corecore