15,476 research outputs found

    Book Review: Dharma of the Twenty-first Century: Theological-Ethical Paradigm Shift

    Get PDF
    A review of Dharma of the Twenty-first Century: Theological-Ethical Paradigm Shift by Somen Das

    Book Review: Philosphy of Religion in Hindu Thought

    Get PDF
    A review of Philosophy of Religion in Hindu Thought, translated and edited by Anand Amaladass

    Book Review: Christ as Common Ground

    Get PDF
    A review of Kathleen Healy\u27s Christ as Common Ground

    Zeeman tomography of magnetic white dwarfs. III, The 70–80 Megagauss magnetic field of PG 1015+014

    Get PDF
    Aims. We analyse the magnetic field geometry of the magnetic DA white dwarf PG 1015+014 with our Zeeman tomography method. Methods. This study is based on rotation-phase resolved optical flux and circular polarization spectra of PG 1015+014 obtained with FORS1 at the ESO VLT. Our tomographic code makes use of an extensive database of pre-computed Zeeman spectra. The general approach has been described in Papers I and II of this series. Results. The surface field strength distributions for all rotational phases of PG 1015+014 are characterised by a strong peak at 70 MG. A separate peak at 80 MG is seen for about one third of the rotation cycle. Significant contributions to the Zeeman features arise from regions with field strengths between 50 and 90 MG. We obtain equally good simultaneous fits to the observations, collected in five phase bins, for two different field parametrizations: (i) a superposition of individually tilted and off-centred zonal multipole components; and (ii) a truncated multipole expansion up to degree l = 4 including all zonal and tesseral components. The magnetic fields generated by both parametrizations exhibit a similar global structure of the absolute surface field values, but differ considerably in the topology of the field lines. An effective photospheric temperature of T eff = 10 000 ± 1000 K was found. Conclusions. Remaining discrepancies between the observations and our best-fit models suggest that additional small-scale structure of the magnetic field exists which our field models are unable to cover due to the restricted number of free parameters

    The C*-algebra of an affine map on the 3-torus

    Full text link
    We study the C*-algebra of an affine map on a compact abelian group and give necessary and sufficient conditions for strong transitivity when the group is a torus. The structure of the C*-algebra is completely determined for all strongly transitive affine maps on a torus of dimension one, two or three

    Bayesian Decision Theoretic Approach to Directional Multiple Hypotheses Problems

    Get PDF
    A multiple hypothesis problem with directional alternatives is considered in a decision theoretic framework. Skewness in the alternatives is considered, and it is shown that this skewness permits the Bayes rules to possess certain advantages when one direction of the alternatives is more important or more probable than the other direction. Bayes rules subject to constraints on certain directional false discovery rates are obtained, and their performances are compared with a traditional FDR rule through simulation. We also analyzed a gene expression data using our methodology, and compare the results to that of a FDR method

    Zeeman tomography of magnetic white dwarfs. IV, The complex field structure of the polars EF Eridani, BL Hydri and CP Tucanae

    Get PDF
    Context. The magnetic fields of the accreting white dwarfs in magnetic cataclysmic variables (mCVs) determine the accretion geometries, the emission properties, and the secular evolution of these objects. Aims. We determine the structure of the surface magnetic fields of the white dwarf primaries in magnetic CVs using Zeeman tomography. Methods. Our study is based on orbital-phase resolved optical flux and circular polarization spectra of the polars EF Eri, BL Hyi, and CP Tuc obtained with FORS1 at the ESO VLT. An evolutionary algorithm is used to synthesize best fits to these spectra from an extensive database of pre-computed Zeeman spectra. The general approach has been described in previous papers of this series. Results. The results achieved with simple geometries as centered or offset dipoles are not satisfactory. Significantly improved fits are obtained for multipole expansions that are truncated at degree lmax = 3 or 5 and include all tesseral and sectoral components with 0 ≤ m ≤ l. The most frequent field strengths of 13, 18, and 10MG for EF Eri, BL Hyi, and CP Tuc, and the ranges of field strength covered are similar for the dipole and multipole models, but only the latter provide access to accreting matter at the right locations on the white dwarf. The results suggest that the field geometries of the white dwarfs in short-period mCVs are quite complex, with strong contributions from multipoles higher than the dipole in spite of a typical age of the white dwarfs in CVs in excess of 1 Gyr. Conclusions. It is feasible to derive the surface field structure of an accreting white dwarf from phase-resolved low-state circular spectropolarimetry of sufficiently high signal-to-noise ratio. The fact that independent information is available on the strength and direction of the field in the accretion spot from high-state observations helps in unraveling the global field structure
    • …
    corecore