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Abstract

A multiple hypothesis problem with directional alternatives is considered in a deci-

sion theoretic framework. Skewness in the alternatives is considered, and it is shown

that this skewness permits the Bayes rules to possess certain advantages when one di-

rection of the alternatives is more important or more probable than the other direction.

Bayes rules subject to certain constrains on the directional false discovery rates are

obtained, and their performances are compared with a traditional FDR rule through

simulation. We also analyzed a gene expression data using methodology developed, and

compare the results to that of FDR method.

AMS Subject Classi�cation: 62C10; 62H15

Key Words: Directional Alternatives; False Discovery Rate; Microarray data

analysis; Multiple hypotheses.

1 Introduction

Multiple hypotheses problems have received a signi�cant amount of attention in the

recent literature due to its use in microarray data analysis, imaging analysis, and other

biological applications. In these applications, typically, data can be formulated in

the form of a m � n matrix X whose ith row xi is a sample from a probability

model P (�j�i; �); where �i is a parameter of interest, and � is a nuisance parameter.
Most of the work in literature focuses on the two-tail hypotheses H i

0 : �i = 0 vs.
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H i
a : �i 6= 0; i = 1; 2; � � � ;m: In this paper, we consider the following hypotheses with

directional alternatives

H i
0 : �i = 0 vs H i

� : �i < 0 or H i
+ : �i > 0; i = 1; 2; :::;m: (1)

Earlier work on this problem was based on the familywise error rate, FWER [4,

5]. However, since this approach controls false discovery of even one null, such an

approach is not practical for higher dimensional problem, i.e., when m is very large.

Scha¤er [9], Lewis and Thayer [6] and Sarkar and Zhou [10] focussed on directional false

discovery rate (DFDR), an analogous version of the false discovery rate (FDR) [2] for the

directional hypotheses. We focus on a Bayesian decision theoretical formulation of this

problem with an emphasis on the directional false discoveries with skewed alternatives

as described in Section 2.

The loss function, we consider, is of the form

L(�;dX) =
mX
i=1

Li(�i; d
X
i ); (2)

where Li(�i; dXi ) is the loss for each individual hypothesis H
i
0 vs: H

i
� or H

i
+; and d

X =

(dX1 ; d
X
2 ; :::; d

X
m); with d

X
i 2 f�1; 0; 1g: Here, dXi = �1means thatH i

� is selected, d
X
i = 0

means that H i
0 is selected, and d

X
i = 1 means that H

i
+.

One of the advantages of the Bayesian decision theoretic approach is that it allows

us to incorporate the prior information on the direction of �is as it may be relevant in

many applications. We consider the prior of the form

�(�) = p���(�) + p0I(� = 0) + p+�+(�); (3)

were p�; p0; and p+ are some preassigned or estimated probabilities with p�+p0+p+ =

1; and ��(�) and �+(�) are densities with support (�1; 0) and (0;1); respectively.
This prior allows skewness in the distribution of �is: If, for example, p+ > p�; then

chances are higher that more of �is are generated with H+ than with H�: This may be

appropriate in many applications. In particular, it is important in genetic experiments

in which a microRNA (a non-coding gene) is transfected in cells of interest to test if it

suppresses the gene expressions of mRNAs. The biological theory is that certain non-

coding genes get attched to a subsequence of speci�c coding genes and thus suppress

their expressions (citation). We will consider the data cited in (citation) in section 7,
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and analyze it using methodology developed in this paper.

The theorem below shows the importance of the prior (3), which is a straightforward

generalization of Theorem 1 of [1], and thus stated without proof.

Theorem 1 Let �(�) and �0(�) be two priors given by

�(�) = p���(�) + p0I(� = 0) + p+�+(�)

�0(�) = p0���(�) + p0I(� = 0) + p0+�+(�);

where p� < p0� and thus p+ > p0+; and let �B and �
0
B denote the Bayes rules under the

loss (2) with respect to � and �0 respectively. Then

r�B+ � r
�0B
+ ; (4)

but

r�B� � r
�0B
� ; (5)

where r�� and r
�
+ are the average Bayes risk of the rule � with respect to �� and �+

respectively.

If �(�) is the true prior with p+ > p�, but the prior �0(�) is considered instead with

p0� = p0+. Then the Theorem 1 implies that the Bayes rule so obtained performs poor

in the right tail of �is which occurs more frequently. If Li(�i; di) is the "0-1" loss, then

this implies that the number of false discoveries by �0B in the positive region of �is will

be higher than by �B: For the non-coding example, this would mean that there will be

more false discoveries if the true skewness in the prior is not taken into account.

Most of the research work on multiple hypothesis problems focus on the false dis-

covery rate (FDR). However, in this paper, we focus on the optimality of decision rule

in a Bayesian decision theoretic framwork as advocated by Muller, Parmigiani and Rice

[7]. We further impose di¤erent notions of directional false discovery rates to obtain

constrained Bayes decision rule. The main advantage of this approach is that a speci�c

prior information, in particular the skewness in the prior, can be utilize to obtain better

decision rules. Generally, if the true skewness in the prior is not taken into account,

then there is a greater chance of false discovery as we noted in the remarks following

Theorem 1.

The rest of the paper is as organized as follows. In Section 2, we present the

de�nitions of the false discovery rates for the directional multiple hypotheses. We
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present a general methodology of Bayes rule in Section 3. Speci�cally how to compute

the Bayes rule is discussed in Section 4, including an example of normal populations.

Simulation results of comparing the Bayes rules and the FDR type rules are discussed

in Section 5. We end with some concluding remarks in Section 6.

2 False Discovery Rates

Letm0; m�; andm+ be true numbers of H0; H�; and H+ hypotheses, respectively, and

let U; V; and W be the number of H0; H�; and H+ selected by a decision rule d. The

Table 1 shows di¤erent possibilities of the decisions. Di¤erent types of false discoveries

are made; for example, V0 and V+ together represent the total number of falsely selected

H� hypotheses. Similarly, W0 and W+ together represent the total number of falsely

selected H+. Following Sha¤er (2002), we de�ne the directional false discovery rate

DFDR as

DFDR = E

�
V0 + V+ +W0 +W�

V +W + I(V = 0)I(W = 0)

�
:

Table 1

Accept H0 Accept H� Accept H+ Total

H0 is true U0 V0 W0 m0

H� is true U� V� W� m�

H+is true U+ V+ W+ m+

U V W m

A di¤erent variation of this false discovery rate can be de�ned. Suppose, one is

interested in controlling false discoveries of H� and H+ separately. In that case, one

may like to control the following left and right false discovery rates, respectively:

LFDR = E

�
V0 + V+

V + I(V = 0)

�
and RFDR = E

�
W0 +W�

W + I(W = 0)

�
The quantities DFDR; LFDR; and RFDR above are de�ned in a frequentist

manner. In other words, the expectations are with respect to X given � and �: A

Bayesian analogue of this can be de�ned if the expectation is with respect to both

X given � and �; and with respect to � and �: We will call these error rates as

BDFDR;BLFDR; and BRFDR; respectively: Posterior versions of these with respect

to the posterior distribution will be denoted by PDFDR; PLFDR; and PRFDR: Note
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that V0 + V+ =
Pm

i=1 I(�i � 0)I(dXi = �1) and W0 +W� =
Pm

i=1 I(�i � 0)I(dXi = 1):
Thus, it is easy to see that

PDFDR =

P
(�0i + v+i )I(d

X
i = �1) +

P
(�0i + v�i )I(d

X
i = 1)

V +W + I(V = 0)I(W = 0)
: (6)

and

PLFDR =

P
(�0i + v+i )I(d

X
i = �1)

V + I(V = 0)
; PRFDR =

P
(�0i + v�i )I(d

X
i = 1)

W + I(W = 0)
; (7)

where

��i = P (�i < 0jx); �+i = P (�i > 0jx); �0i = P (�i = 0jx) (8)

3 Statistical Methodology

3.1 Bayes Rules under the "0-1" Loss Function

Many special cases of the loss (2) can be considered to re�ect the loss in terms of

number of false discoveries or false discovery rates. The simplest loss is the "0-1" loss

L0(�; d) =
X

I(dXi � 1)I(�i < 0)+
X

I(dXi � 1)I(�i > 0) (9)

+
X

I(dXi 6= 0)I(�i = 0):

Note that the expected loss E[L(�; d(X))] is the expected number of total false

decisions, (V0 + W0) + (V+ + W�) + (U� + U+): The Bayes rule can be obtained by

minimizing the posterior expected loss,

E[L0(�; d)jx] = E[(m� +m+)jx]�
X
(v�i � v0i )I(d

X
i = �1)�

X
(v+i � v0i )I(d

X
i = 1);

(10)

From (10), it is easy to see that the Bayes rule selects H i
0 if max(�

�
i ; �

+
i ) � �0i ;

selects H i
� if �

�
i > �0i and �

�
i > �+i ; and selects H

i
+ if �

+
i > �0i and �

+
i > ��i : Thus with

the notations

D�
1 = fi : ��i > �0i ; ��i > �+i g; D+

1 = fi : �+i > �0i ; �+i > ��i g; (11)

5



the Bayes rule can be stated as

�
(0)
B =

8><>:
Select H i

� for i 2 D�
1

Select H i
+ for i 2 D+

2

Select H i
0 for i =2 D�

1 [D+
1

(12)

Note that the Bayes rule �(0)B does not control any false discovery rates. We de�ne

the constrained Bayes rule �(1)B as the rule that minimizes the posterior expected loss

(10) subject to constrain that PDFDR � �; where PDFDR is given by (6). Note

that PDFDR � � also implies that BDFDR � �.

Now, de�ne  i = �+i + �0i if i 2 D�
1 and  i = ��i + �0i if i 2 D+

1 ; and rank

f i; i 2 D�
1 [ D+

1 g from the lowest to the highest. Suppose the ranked values are

denoted  [1] �  [2] � ::: �  [jD�
1 [D

+
1 j]
; where notation j�j is used to denote the cardinality

of a set. Denote

i0 = maxfj � jD�
1 [D+

1 j :
1

j

jX
i=1

 [i] � �g: (13)

If D1 � D�
1 [D+

1 denotes the set of indices corresponding to [1]; [2]; : : : ; [i0]; then it is

easy to see, from (6) and (12), that the constrained Bayes rule �(1)B is given by

�
(1)
B =

8><>:
Select H i

� if i 2 D�
1 \D1 

Select H i
+ if i 2 D+

1 \D1 

Select H i
0 if i =2 (D�

1 [D+
1 ) \D1 :

(14)

In many applications, there may be a need for controlling the false discovery of

left and right tail hypotheses H i
� and H i

+ separately as it may be the case for the

non-coding gene example described in the Introduction. The constrained Bayes rule

�
(2)
B in this case can be obtained by minimizing (10) subject to PLFDR � �L and

PRFDR � �R; where �L and �R are some pre-assigned error rates depending upon

the risks associated with selecting H i
� and H

i
+, respectively: To obtain �

(2)
B , �rst rank

f�0+i = �+i + �
0
i ; i 2 D�

1 g from the lowest to the highest and rank f�0�i = ��i + �
0
i ; i 2

D+
1 g from the lowest to the highest. Let the ranked values be, respectively, denoted

by v0+[1];� � v0+[2];� � ::: � v0+
[jD�

1 j];�
and v0�[1];+ � v0�[2];+ � ::: � v0�

[jD+
1 j];+

; respectively. Now,
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de�ne

i�0 = maxfj � jD�
1 j :

1

j

jX
i=1

v0+[i];� � �Lg; (15)

i+0 = maxfj � jD+
1 j :

1

j

jX
i=1

v0�[i];+ � �R: (16)

Denoting D�
1� � D�

1 as the set of indices corresponding to �+[1];�; : : : ; �
+

[i�0 ];�
and

D+
1� � D+

1 as the set of indices corresponding to v
0�
[1];+ � ::: � v0�

[i+0 ];+
; it is easy to see

from (12), (15), and (16), that the constrained Bayes rule �(2)B can be written as

�
(2)
B =

8><>:
Select H i

� if i 2 D�
1�

Select H i
+ if i 2 D+

1�

Select H i
0 if i =2 D�

1� [D+
1� :

(17)

3.2 Bayes Rules under a General Loss Function

The "0-1" loss gives equal loss of 1 for misclassifying a true H� as H0 or H+; and a

true H+ as H0 or H�: It may be more appropriate to give higher loss for selecting a

true H� as H+ than selecting it as H0; and likewise for selecting a true H+ as H� than

selecting it as H0: More generally, we may allow the loss to depend on the actual value

of �:

Li(�i; d
X
i = �1) =

8><>:
0 if �i < 0

l0 if �i = 0

l0 + l(�i) if �i > 0

Li(�i; d
X
i = 0) =

8><>:
l1 + l(�i) if �i < 0

0 if �i = 0

l1 + l(�i) if �i > 0

(18)

Li(�i; d
X
i = 1) =

8><>:
l0 + l(�i) if �i < 0

l0 if �i = 0

0 if �i > 0

;

where l0 and l1 are some some positive constants, and l(�) � 0 is a function that is

symmetric around 0 and is increasing in j�j: Note that l0 = l1 = 1 and l(�) = 0 lead to
the "0-1" loss.
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The posterior loss, in this case, is given by

E[
X

Li(�i; di)jx] =
X

E[(l1 + l(�i))I(�i 6= 0)jx]

�
X
(w�i + l0v

�
i + l1 � l0 � l1v

0
i )d

�
i

�
X
(w+i + l0v

+
i + l1 � l0 � l1v

0
i )d

+
i ;

where

w�i = E[l(�i)I(�i < 0)jx] and w+i = E[l(�i)I(�i > 0)jx] (19)

The analogous versions of �(0)B ; �
(1)
B and �(2)B can now be obtained, in a similar manner

as discussed in susection 3.1, by replacing D�
1 and D

+
1 ; in (11), by

D�
1l = fi : w�i + l0�

�
i > l0 � l1 + l1�

0
i ; w�i + l0�

�
i > w+i + l0�

+
i g; (20)

D+
1l = fi : w+i + l0�

+
i > l0 � l1 + l1�

0
i ; w+i + l0�

+
i > w�i + l0�

�
i g;

respectively.

3.3 A Bayes Rule with Exact BDFDR = �

Note that if l1 = l0 in the loss (18); then from (20), i 2 D�
1l [D+

2l if w
�
i > l0(�

0
i � ��i )

or w+i > l0(�
0
i � �+i ): Thus, i 2 D�

1 [ D+
2 implies i 2 D�

1l [ D+
2l, which implies that

the Bayes rule based on the loss (18) enlarges the rejection region (of rejecting H i
0) in

comparison to the "0-1" loss. Moreover, if l(�) = la (some �xed positive value), then it

can be seen from (19) and (20) that

D�
1l = fi : ��i > c0�

0
i ; ��i > �+i g; D+

1l = fi : �+i > c0�
0
i ; �+i > ��i g;

where c0 = l0=(l0 + la): This c0 now can be used as an instrument so that the Bayes

rule is of particular false discovery rate. For example, we can �nd c0 (0 < c0 < 1) such

that

BDFDR = E[

P
(�0i + v+i )d

�
i +

P
(�0i + v�i )d

+
i

V +W + I(V = 0)I(W = 0)
] = �; (21)

where the expectation is with respect to the marginal distribution of X: It may be

interesting to know the property of BDFDR as a function of c0. Of particular interests

would be to know whether BDFDR is a monotonic function of c0. If so, c0 can be

found through simulation as we illustrate in the next section. This yields a new Bayes

rule with exact BDFDR = �; which selects H i
� if i 2 D�

1l; selects H
i
+ if i 2 D+

1l; and
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selects H i
0 for all other i:

4 Computation of the Bayes rules

In this section, we discuss the computation of the Bayes rules under the prior (3).

We will assume that X can be reduced to a su¢ cient statistics (Y; S) such that

Y = (Y1; Y2; : : : ; Ym)
T is a vector of independent variates with Yi � f(yi; �i; �); i =

1; : : : ;m; the distribution of S is independent of �; and where Y and S are inde-

pendently distributed: A typical example, where this can be done, is Xij = �i +

"ij; j = 1; 2; :::; n; i = 1; 2; :::;m, where "ij � N(0; �2): In this case, Yi = �Xi; and

S =
PP

(Xij � �Xi)
2:

As discussed in Section 2, the Bayes rules are determined by the posterior distrib-

ution of � given X = x: When there is a nuisance parameter �, the posterior expected

loss can be computed by �rst computing the expectation with respect to the posterior

distribution of � given X = x; � and then with respect to the posterior distribution of

� givenX = x. Note that based on the assumption on (Y; S), the posterior distribution

of � given X = x; � requires only the consideration of the distribution Yi � f(yi; �i; �);

i = 1; : : : ;m and the prior distribution (3). We show in the Appendix that a good

approximation can be obtained by only considering the distribution Yi � f(yi; �i; �);

i = 1; : : : ;m with the prior (3), and then by replacing � by the mode of the posterior

distribution of � given S = s. Thus, from now on, we will assume that � is known with

the understanding that, in the case of unknown �, � can be replaced by the posterior

mode of � given S = s.

Conditionally, given X = x; the �1; �2; � � � ; �m are independently distributed with
marginal densities (suppressing � for simplicity)

�(�ijyi) = �(H�
i jyi)�(�ijH�

i ; yi) + �(H0
i jyi)I(�i = 0) + �(H+

i jyi)�(�ijH+
i jyi); (22)

where �(�ijH�
i ; yi) and �(�ijH+

i ; yi) are the posterior distributions with respect to the

priors ��(�i) and �+(�i) respectively, and

�(H�
i jyi) / p�f(yijH�

i ); �(H
0
i jyi) / p0f(yijH i

0); �(H
+
i jyi) / p+f(yijH+

i );

where f(yijH0
i ) = f(yij0), and f(yijH�

i ), f(yijH+
i ) are the marginal densities under the

priors �� and �+; respectively, keeping � �xed. Note that the proportionality constant

above is the inverse of [p�f(yijH�
i ) + p0f(yijH0

i ) + p+f(yijH+
i )]:

9



Clearly,

v�i = �(H�
i jyi); v0i = �(H0

i jyi); v+i = �(H+
i jyi): (23)

The Bayes decision rule and the constrained Bayes rules �(0)B ; �
(1)
B ; and �(2)B ; as de�ned

in (12), (14), and (17), can now be obtained from (23). For the loss function (18), the

Bayes rule requires, in addition to (23), the computation of w�i = E[l(�)I(� < 0)jX]
and w+i = E[l(�)I(� > 0)jX]; which are given by

w�i = �(H�
i jyi)E[l(�i)jH�

i ; yi]; w
+
i = �(H+

i jyi)E[l(�i)jH+
i ; yi]: (24)

Denoting T+(yi) = f(yijH�
i )=f(yij0) and T�(yi) = f(yijH+

i )=f(yij0), it can be seen
that

��i =
p�T�(yi)

p�T�(yi) + p+T+(yi) + p0
; �+i =

p+T+(yi)

p�T�(yi) + p+T+(yi) + p0

�0i =
p0

p�T�(yi) + p+T+(yi) + p0
:

Thus, from (11),

D�
1 = fi : T�(yi) > p0=p�; p�T�(yi) > p+T+(yi)g (25)

D+
1 = fi : T+(yi) > p0=p+; p+T+(yi) > p�T�(yi)g:

Note that

T�(yi) =

Z 0

�/

f(yij�i)
f(yij0)

��(�i)d�i and T+(yi) =

Z /

0

f(yij�i)
f(yij0)

�+(�i)d�i: (26)

Thus if f(yij�i) has monotone likelihood ratio (MLR) property in yi, then T�(yi) (T+(yi))
is a decreasing (increasing) function of yi: In that case, from (12) and (25), it is easy to

see that �(0)B selects H i
0 if T

�1
� (p0=p�) � yi � T�1+ (p0=p+); selects H i

� if yi < T�1� (p0=p�);

and selects H i
+ if yi > T�1+ (p0=p+): Also note that in this case ��i is a decreasing func-

tion of yi; and �+i is an increasing in yi: This property makes the computation of �
(1)
B

and �(2)B simpler in the sense of less computational need for T�(yi) and T+(yi): The

following Theorem summarizes the results.

Theorem 2 Suppose the pdf of yi; f(yij�); is MLR in yi: Let k� be the largest integer
i such that y[i] < T�1� (p0=p�) and p�T�(y[i]) > p+T+(y[i]); and let k+ be the small-

est integer i such that y[i] > T�1+ (p0=p+) and p+T+(y[i]) > p�T�(y[i]); where T� and

10



T+ are de�ned by (26). Then the Bayes rule �
(0)
B selects H i

� for all i associated with

y[1]; : : : ; y[k�], selects H
i
+ for all i associated with y[k+]; : : : ; y[m]; and selects H

i
0 for all

other i:

Additionally, suppose the maxf 1
j1+j2

(
Pj1

i1=1
�0+[i1] +

Pj2
i2=1

�0�[i2]) : j1 � k�; j2 �
m� k+ + 1g; subject to the constrain that it is � �; is attained by the indices j1 = i�10

and j2 = m� i+20+1: Then the constrained Bayes rule �
(1)
B selects H i

� for all i associated

with y[1]; : : : ; y[i�10]; selects H
i
+ for all i associated with y[i+20]; : : : ; y[m]; and selects H

i
0 for

all other i:

Also, let i�0 = maxfj : 1
j

Pj
i=1 �

0+
[i] � �L; i � k�g and i+0 = minfm � j + 1 :

1
j

Pj
i=1 �

0�
[j] � �R; j � m � k+ + 1g: Then the constrained Bayes rule �(2)B selects H(i)

�

for all i associated with y[1]; : : : ; y[i�0 ]; selects H
i
+ for all i associated with y[i+0 ]; : : : ; y[m];

and selects H i
0 for all other i.

Some more simpli�cation in the computation is possible if ��(�i) and �+(�i) are such

that �+(�i) = ��(��i); and if f(yij�i) = f(y0ij��i) for some y0i: Then it can be seen that
T�(yi) = T+(y

0
i): For example, in the binomial case, where yi s b(n; pi); i = 1; 2; :::;m;

consider the problem of testing H i
0 : �i = 0 vs: H i

� : �i < 0 or H i
+ : �i > 0; where

�i = log pi=(1� pi): If �+(�i) = �(��i); then T�(yi) = T+(n� yi): A similar point can

be made about the normal distributions as shown later.

Remark 3 For the general loss as de�ned in Section 3, the above Theorem can be

easily modi�ed with the initial cut-o¤ k� as the largest integer i such that w�i + l0v
�
i >

max(w+i + l0v
+
i ; l0 � l1 + l1v

0
i g; and the cut-o¤ k+ as the smallest integer i such that

w+i + l0v
+
i > max(w�i + l0v

�
i ; l0 � l1 + l1v

0
i g; where w�i = E[l(�i)I(�i < 0)jx] and

w+i = E[l(�i)I(�i > 0)jx]:

4.1 Determination of p�; p+; and p0

The Bayes rules as described above are sensitive to the choice of (p�; p0; p+): If these

probabilities are not available subjectively, they need to be estimated from the data

itself. The EM algorithm can be used to estimate (p�; p0; p+) by maximizing the

marginal likelihood function. Note that the marginal likelihood (�xing �) is given by

L(p�; p0; p+jy) =
mY
i=1

[p�f(yijH�
i ) + p0f(yij0) + p+f(yijH+

i )]:

11



It is easy to see that the iterative solution of the EM algorithm is given by

p̂
(j+1)
� =

1

m

mX
i=1

p̂
(j)
� T�(yi)

p̂
(j)
� T�(yi) + p̂

(j)
+ T+(yi) + p̂

(j)
0

p̂
(j+1)
0 =

1

m

mX
i=1

p̂
(j)
0

p̂
(j)
� T�(yi) + p̂

(j)
+ T+(yi) + p̂

(j)
0

p̂
(j+1)
+ =

1

m

mX
i=1

p̂
(j)
+ T+(yi)

p̂
(j)
� T�(yi) + p̂

(j)
+ T+(yi) + p̂

(j)
0

4.2 Normal Populations

Let yi v N(�i; �
2=n). We consider the priors �� and �+ as the left and the right trun-

cated N(0; �2=!) priors; where ! is some positive constant. Then �+(�i) = ��(��i),
and thus it is easy to see that y0i = �yi and T�(yi) = T+(�yi); where

T+(yi) = 2

r
!

n+ !
expf n2y2i

2(n+ !)�2
g�( nyi

�
p
n+ !

) (27)

Since the density of Yi is MLR in yi; Theorem 2 can be applied. Thus, from Theorem

2, the Bayes rule �(0)B can be stated as follows:

Let

k� = maxfi : y[i] < �cp
�
p
n+ !

n
; p�T+(�y[i]) > p0g (28)

k+ = maxfi : y[i] > �cp
�
p
n+ !

n
; p+T+(y[i]) > p0g;

where cp is the p+=(p++p�)th percentile of N(0; 1): Then select H�
i for all i associated

with y[1]; : : : ; y[k�]; select H
i
+ for all i associated with y[k+]; : : : y[m]; and select H

i
0 for

all other i.

The constrained Bayes rules �(1)B and �
(2)
B can also be computed as described in

Theorem 2 with

�0�[i] =
p�T+(�y[i]) + p0

p�T+(�y[i]) + p+T+(y[i]) + p0
; for i � k+

and

�0+[i] =
p+T+(y[i]) + p0

p�T+(y[i]) + p+T+(y[i]) + p0
; for i � k�;

12



Note that, because of monotonicity of T+(�); �0+[1] � : : : � �0+[k�] and �
0�
[m] � : : : � �0�[k+]:

As we mentioned in Section 3.3, the following Bayes rule attains exactBDFDR = �:

Select H i
0 if �

�
i > c0�

0
i and ��i > �+i ; select H

i
+ if �

+
i > c0�

0
i and �+i > ��i ;

otherwise, select H i
0:

Here the constant c0 is such that the (21) is satis�ed. Using the same arguments

as in the proof of Theorem 2, it can be seen that the Bayes rule selects H i
� for all i

associates with y[1]; : : : ; y[k�(c0)]; selects H
i
+ for all i associated with y[k+(c0)]; : : : y[m]; and

selects H i
0 for all other i; where

k�(c0) = maxfi : y[i] < �cp
�
p
n+ !

n
; p�T+(�y[i]) > c0p0g

k+(c0) = maxfi : y[i] > �cp
�
p
n+ !

n
; p+T+(y[i]) > c0p0g:

The constant c0 does not depend on �; and thus a general table can be created for a

speci�c sample size for this cut-o¤ point. For example, when sample size n = 10 for

all i with ! = 1; Figure 1 shows the graph of BDFDR (computed through simulation)

as a function of c0 for p+ = 0:4 and p� = 0:1: From this, for � = 0:05; we obtain

c0 = 2:896:

[Figure 1]

5 Simulation Results

We now use simulation to illustrate the performance of �(0)B ; �
(1)
B ; �

(2)
B and compare them

to the Benjamini-Hochberg (BH) procedure. We generated yi from N(�i; 1=n), and

�i from (3) with �� and �+ as left and right truncated standard normal densities,

respectively, for di¤erent choices of (p�; p0; p+): Note that the Benjamini-Hochberg

procedure is based on two-tailed test. Thus, to adapt it to the directional hypothesis

(1), upon rejectingH i
0; we selectH

�
i if yi < 0; andH

+
i if yi > 0: The following quantities

will be used to compare the results: left-tailed correct discovery rate (LCDR), right-

tailed correct discovery rate (RCDR), left-tailed false non-discovery rate (LFNDR),

13



and right-tailed false non-discovery rate (RFNDR), de�ned by

LCDR = E[
V�
V
]; RCDR = E[

W+

W
];

LFNDR = E[
U�
U
]; RFNDR = E[

U+
U
]: (29)

Note that the expectations above are with respect to both X and �: LCDR and

RCDR re�ects the power of the tests for the proportion of correct discoveries of left

tail and right tail hypotheses, respectively. LFNDR and RFNDR re�ects the false

non-discoveries in left and right directions, respectively. The reason the latter rates

are important is that a poor test might have a high proportion of correct discoveries

but too many of true left and right tails might be declared null. A large error rates of

LFNDR and RFNDR will clearly re�ect this.

Note that all quantities in (29) depend on the k� and k+ of (28) and T+(yi) as

de�ned in (27). It is easy to see that k�, k+ and T+(yi) are all invariant with respect

to �: Thus, without loss of generality, all comparisons made here can be stated for any

�:

Tables 2-4 are based on the simulation of 5; 000 repetitions with m = 1000 and

n = 10: In Table 2, the BH procedure is based on FDR of the same level as the FDR

of level 0:05: In Table 3, the constrained Bayes rule �(1)B is based on BDFDR (= �)

of 0.05, and in Table 4, the constrained Bayes rule �(2)B is based on BLFDR (= �L) of

0.025 and BRFDR (= �R) of 0.025.

[Tables 2-4]

Note that in all cases we have chosen p+ > p�: The results of BH are highly non-

symmetrical depending upon the values of p� and p+: Generally for the BH rules, the

correct discovery rates LCDRs for the left tails are much lower than correct discovery

rates RCDRs for the right tails. However, for both �(1)B and �(2)B ; both rates are balanced

and very high. For example when (p�; p+) = (0:05; 0:3); the BH rule has a correct

discovery rate of 0.7429 in the left tail as compared to the correct discovery rate of 0.9547

for �(1)B and 0.9789 for �(2)B : In the context of microarray data analysis this would mean

that if a particular cell-line generate more of over-expressed genes than under-expressed

gene, then the BH rule would falsely select under-expressed genes with high proportion

in comparison to �(1)B or �(2)B . A similar point can be made about false non-discoveries.
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When p+ > p�; RFNDR is relatively large for BH, meaning a high percentage of

right tails are declared null. In the context of microarray data analysis, this means

that a higher percentage of overexpressed genes are declared null under BH rule when

compared to �(1)B or �(2)B . Overall conclusion is that if the selection of over-expressed

genes are more likely, then �(1)B or �(2)B outperform BH rule. When comparing �(1)B and

�
(2)
B ; �

(2)
B has a better correct discovery rates than the �(1)B ; but false non-discover rates

are mostly higher for �(2)B .

6 Concluding Remarks

In this paper, we provide a general framework of computing Bayes decision rule for

the directional multiple hypothesis problem when the left and the right hypotheses are

asymmetrically generated. The decision rules we derived attain Bayesian optimality

with a control directional false discovery rates. The false discovery rates we considered

can be controlled in left and right directions combined, or separately. The methodologies

presented here are useful in many practical situations where it is expected that one

direction is more probable than the other. We show through simulation that taking

this information into account yields better decision rules. We also noted that the type

of the loss function makes a di¤erence. Through simulation, we found that If the

proportion of correct discoveries is more desirable, then a non - "0-1" loss function is

better choice than the "0-1" loss. We also showed that if the densities have monotone

likelihood ration (MLR) property, then the Bayes rule takes a very simple form. In that

case, the Bayes rule can be obtained in the form of the ranked values of the su¢ cient

statistics; and additionally, only a simple non-linear computation is required to �nd the

cut-o¤ points.

A Appendix

A.1 Estimation of E[g(�i; �)jx] for a non-linear function g

Here, we assume that X can be reduced to a su¢ cient statistic (Y; S) such that Y =

(Y1; Y2; : : : ; Ym)
T is a vector of independent variates with Yi � f(yi; �i; �); i = 1; : : : ;m;

and where Y and S are independently distributed, and the distribution of S is inde-

pendent of �: When � is kept �xed, the computation of E[g(�i; �)jx] is based on the
posterior distribution of �i given yi and �. Suppose the resulting expression is h(�jyi):
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It can be seen that the posterior expectation of h(�jyi) can be written as

E[h(�jyi)jx] =
f�(s)

f�(yi; s)

Z
h(�jyi)f�(yij�)�(�js)d�; (30)

where f�(s); f�(yi; s) are the marginal densities of S and (Yi; S) respectively; f�(yij�)
is the marginal density of yi given �; and �(�js) is the posterior density of � given
S = s. Note that �(�js) does not depend on �. Now, suppose �(�js) / exp(�mgm(�));
where gm is of order O(1): In this case, using Laplace approximation, it can be shown

(Severini [11], section 2.11)) thatZ
h(�jyi)f�(yij�)�(�js)d�

:
= h(�̂jyi)f�(yij�̂)

p
2�p

mg00m(�̂)
expf�mg00m(�̂)g

with the remainder term of order O(1=m); where �̂ the posterior mode. Thus, from

(30), we have

E[h(�jyi)jx]
:
=

f�(s)

f�(yi; s)
f�(yij�̂)h(�̂jyi)

p
2�p

mg00m(�̂)
expf�mg00m(�̂)g (31)

A.2 Bayes rule in the presence of the nuisance parameter �

Since f�(s); f�(yi; s) and f�(yij�̂) does not depend on the function h and since the

Bayes rules only depend on the ratios of the expressions (31) for di¤erent h functions,

the Bayes rule can be expressed approximately in terms of h(�̂jyi) alone for large m.
Regarding the assumption that �(�js) / exp(�mgm(�)); this would typically be the
case if S is composed of i:i:d: copies (Si; i = 1; 2; � � � ;m). In many practical cases,
this would be the case; for example, when the observes variables are Xij = �i + "ij;

where "ij are independently and identically distributed with distribution independent

of �i; i = 1; 2; � � �m: In this case Si =
P

j(Xij � �Xi)
2, and in this case the posterior

distribution �(�js) satis�es the desired condition:
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Table 2: Left- and right-tailed correct discovery rates

and false non-discovery rates of BH

(p�; p+) LCDR RCDR LFNDR RFNDR

(0:1; 0:8) 0:9260 0:9938 0:0899 0:7185

(0:1; 0:6) 0:8403 0:9735 0:0734 0:4423

(0:1; 0:4) 0:8337 0:9548 0:0652 0:2611

(0:05; 0:4) 0:7162 0:9553 0:0318 0:2551

(0:1; 0:3) 0:8456 0:9441 0:0626 0:1879

(0:05; 0:3) 0:7429 0:9471 0:0308 0:1853

(0:1; 0:2) 0:8670 0:9298 0:0612 0:1223

(0:05; 0:2) 0:7846 0:9373 0:0302 0:1217

(0:1; 0:1) 0:8987 0:8990 0:0607 0:0607

(0:05; 0:1) 0:7831 0:9362 0:0304 0:1215

(0:05; 0:05) 0:8926 0:8928 0:0313 0:0313

Table 3: Left- and right-tailed correct discovery rates

and false non-discovery rates of �(1)B
(p�; p+) LCDR RCDR LFNDR RFNDR

(0:1; 0:8) 0:9568 0:9496 0:1807 0:5445

(0:1; 0:6) 0:9560 0:9495 0:0992 0:3920

(0:1; 0:4) 0:9539 0:9496 0:0794 0:2513

(0:05; 0:4) 0:9547 0:9502 0:0414 0:2465

(0:1; 0:3) 0:9535 0:9500 0:0734 0:1873

(0:05; 0:3) 0:9547 0:9503 0:0386 0:1841

(0:1; 0:2) 0:9520 0:9506 0:0690 0:1263

(0:05; 0:2) 0:9532 0:9509 0:0360 0:1242

(0:1; 0:1) 0:9512 0:9518 0:0656 0:0656

(0:05; 0:1) 0:9542 0:9503 0:0362 0:1240

(0:05; 0:05) 0:9538 0:9531 0:0339 0:0339
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Table 4: Left- and right-tailed correct discovery rates

and false non-discovery rates of �(2)B
(p�; p+) LCDR RCDR LFNDR RFNDR

(0:1; 0:8) 0:9766 0:9750 0:1459 0:6177

(0:1; 0:6) 0:9769 0:9752 0:0968 0:4293

(0:1; 0:4) 0:9768 0:9754 0:0816 0:2728

(0:05; 0:4) 0:9788 0:9753 0:0425 0:2679

(0:1; 0:3) 0:9769 0:9756 0:0766 0:2023

(0:05; 0:3) 0:9789 0:9756 0:0401 0:1989

(0:1; 0:2) 0:9771 0:9760 0:0728 0:1354

(0:05; 0:2) 0:9793 0:9760 0:0379 0:1334

(0:1; 0:1) 0:9771 0:9771 0:0697 0:0697

(0:05; 0:1) 0:9805 0:9755 0:0381 0:1331

(0:05; 0:05) 0:9805 0:9799 0:0359 0:0359
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