1,189 research outputs found
Two-dimensional order in β-sheet peptide monolayers
Amphiphilic peptides comprising alternating hydrophilic and hydrophobic amino acid residues were designed to form super-secondary structures composed of self-assembled β-strands as monolayers at the air−water interface. Insights provided by in situ grazing-incidence X-ray diffraction (GIXD), surface pressure vs area isotherms, and Fourier transform infrared spectroscopy allow structural characterization of the assembled nanostructures and rational correlation with the peptide sequence. Peptides seven to seventeen amino acids in length were found to form crystalline arrays with coherence lengths in the range of 100 to 1000 Å. Two-dimensional registry of the self-assembled peptides was induced by placement of proline residues at the peptide termini. The films were found to intercalate ordered arrays of ions between juxtaposed β-sheet ribbons to generate peptide−ion composite phases
Astrophysics in 2006
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest
stars; the weirdest life forms and the commonest dwarfs; the highest energy
particles and the lowest energy photons. These were some of the extremes of
Astrophysics 2006. We attempt also to bring you updates on things of which
there is currently only one (habitable planets, the Sun, and the universe) and
others of which there are always many, like meteors and molecules, black holes
and binaries.Comment: 244 pages, no figure
The 3-D Structure of SN 1987A's inner Ejecta
Twenty years after the explosion of SN 1987A, we are now able to observe the
three-dimensional spatially resolved inner ejecta. Detailed mapping of newly
synthesised material and its radioactive decay daughter products sheds light on
the explosion mechanism. This may reveal the geometry of the explosion and its
connection to the equatorial ring and the outer rings around SN 1987A. We have
used integral field spectroscopy to image the supernova ejecta and the
equatorial ring in the emission lines of [Si I]+[Fe II] and He I. The spectral
information can be mapped into a radial velocity image revealing the expansion
of the ejecta both as projected onto the sky and perpendicular to the sky
plane. The inner ejecta are spatially resolved in a North-South direction and
are clearly asymmetric. We argue that the bulk of the ejecta is situated in the
same plane as defined by the equatorial ring and does not form a bipolar
structure as has been suggested. The exact shape of the ejecta is modelled and
we find that an elongated triaxial ellipsoid fits the observations best. From
our spectral analyses of the ejecta spectrum we find that most of the He I, [Si
I] and [Fe I-II] emission originates in the core material which has undergone
explosive nucleosynthesis. The He I emission may be the result of alpha-rich
freeze-out if the positron energy is deposited locally. Our observations
clearly indicate a non-symmetric explosion mechanism for SN 1987A. The
elongation and velocity asymmetries point towards a large-scale spatial
non-spherical distribution as predicted in recent explosion models. The
orientation of the ejecta in the plane of the equatorial ring argues against a
jet-induced explosion through the poles due to stellar rotation.Comment: Above abstract is abridged. 11 pages, 9 figures. Accepted July 1st
2010 by Astronomy and Astrophysic
Polyploidy can confer superiority to West African Acacia senegal (L.) Willd. trees
Polyploidy is a common phenomenon in the evolution of angiosperms. It has been suggested that polyploids manage harsh environments better than their diploid relatives but empirical data supporting this hypothesis are scarce, especially for trees. Using microsatellite markers and flow cytometry, we examine the frequency of polyploids and diploids in a progeny trial testing four different populations of Acacia senegal, a species native to sub-Saharan regions of Africa. We compare growth between cytotypes and test whether polyploid seedlings grow better than diploids. Our results show that polyploids coexist with diploids in highly variable proportions among populations in Senegal. Acacia senegal genotypes were predominantly diploid and tetraploid, but triploid, pentaploid, hexaploid, and octaploid forms were also found. We find that polyploids show faster growth than diploids under our test conditions: in an 18 years old field trial, polyploid superiority was estimated to be 17% in trunk diameter and 9% in height while in a growth chamber experiment, polyploids grew 28% taller, but only after being exposed to drought stress. The results suggest that polyploid A. senegal can have an adaptive advantage in some regions of Africa
Peak Power Output in Loaded Jump Squat Exercise is Affected by Set Structure
International Journal of Exercise Science 11(1): 776-784, 2018. A priority in strength and power exercise might be to train with as high quality as possible for the shortest possible duration. In this context, peak power output could reflect quality. Designing an exercise session as a cluster set structure, as compared to a traditional set structure, may be a way to obtain higher peak power output in the session. But it is unknown whether that is obtainable for non-elite individuals performing loaded jump squat exercise. The aim of the present study was therefore to test the hypothesis that peak power output would be highest in a jump squat exercise session, which was structured with cluster sets, as compared to traditional sets. Ten individuals (2 women, 8 men; 26.5 ± 4.8 years, 1.81 ±0.08 m, 90.9 ± 13.2 kg) performed two loaded jump squat exercise sessions structured with cluster sets and traditional sets, respectively. The sessions were performed on two separate days, in counterbalanced order. The position of the barbell was used to calculate derived values including peak power output. Values calculated as averages across the entire exercise sessions showed peak power output to be 178 ± 181 W, corresponding to 4.1% ± 4.9%, higher in the session with cluster set structure, as compared to the session with traditional set structure (p = 0.005). It was concluded that for non-elite individuals, peak power output was approximately 4% higher in a loaded jump squat exercise session structured with cluster sets as compared to an exercise session structured with traditional sets
- …