35 research outputs found

    Automated fetal brain extraction from clinical Ultrasound volumes using 3D Convolutional Neural Networks

    Full text link
    To improve the performance of most neuroimiage analysis pipelines, brain extraction is used as a fundamental first step in the image processing. But in the case of fetal brain development, there is a need for a reliable US-specific tool. In this work we propose a fully automated 3D CNN approach to fetal brain extraction from 3D US clinical volumes with minimal preprocessing. Our method accurately and reliably extracts the brain regardless of the large data variation inherent in this imaging modality. It also performs consistently throughout a gestational age range between 14 and 31 weeks, regardless of the pose variation of the subject, the scale, and even partial feature-obstruction in the image, outperforming all current alternatives.Comment: 13 pages, 7 figures, MIUA conferenc

    Motion corrected 3D reconstruction of the fetal thorax from prenatal MRI

    Get PDF
    In this paper we present a semi-automatic method for analysis of the fetal thorax in genuine three-dimensional volumes. After one initial click we localize the spine and accurately determine the volume of the fetal lung from high resolution volumetric images reconstructed from motion corrupted prenatal Magnetic Resonance Imaging (MRI). We compare the current state-of-the-art method of segmenting the lung in a slice-by-slice manner with the most recent multi-scan reconstruction methods. We use fast rotation invariant spherical harmonics image descriptors with Classification Forest ensemble learning methods to extract the spinal cord and show an efficient way to generate a segmentation prior for the fetal lung from this information for two different MRI field strengths. The spinal cord can be segmented with a DICE coefficient of 0.89 and the automatic lung segmentation has been evaluated with a DICE coefficient of 0.87. We evaluate our method on 29 fetuses with a gestational age (GA) between 20 and 38 weeks and show that our computed segmentations and the manual ground truth correlate well with the recorded values in literature

    Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels

    Full text link
    Segmentation of the developing fetal brain is an important step in quantitative analyses. However, manual segmentation is a very time-consuming task which is prone to error and must be completed by highly specialized indi-viduals. Super-resolution reconstruction of fetal MRI has become standard for processing such data as it improves image quality and resolution. However, dif-ferent pipelines result in slightly different outputs, further complicating the gen-eralization of segmentation methods aiming to segment super-resolution data. Therefore, we propose using transfer learning with noisy multi-class labels to automatically segment high resolution fetal brain MRIs using a single set of seg-mentations created with one reconstruction method and tested for generalizability across other reconstruction methods. Our results show that the network can auto-matically segment fetal brain reconstructions into 7 different tissue types, regard-less of reconstruction method used. Transfer learning offers some advantages when compared to training without pre-initialized weights, but the network trained on clean labels had more accurate segmentations overall. No additional manual segmentations were required. Therefore, the proposed network has the potential to eliminate the need for manual segmentations needed in quantitative analyses of the fetal brain independent of reconstruction method used, offering an unbiased way to quantify normal and pathological neurodevelopment.Comment: Accepted for publication at PIPPI MICCAI 202

    Adaptive scan strategies for fetal MRI imaging using slice to volume techniques

    Get PDF
    © 2015 IEEE.In this paper several novel methods to account for fetal movements during fetal Magnetic Resonance Imaging (fetal MRI) are explored. We show how slice-to-volume reconstruction methods can be used to account for motion adaptively during the scan. Three candidate methods are tested for their feasibility and integrated into a computer simulation of fetal MRI. The first alters the main orientation of the stacks used for reconstruction, the second stops if too much motion occurs during slice acquisition and the third steers the orientation of each slice individually. Reconstruction informed adaptive scanning can provide a peak signal-to-noise ratio (PSNR) improvement of up to 2 dB after only two stacks of scanned slices and is more efficient with respect to the uncertainty of the final reconstruction

    Automatic brain localization in fetal MRI using superpixel graphs

    Get PDF
    Fetal MRI is emerging as an effective, non-invasive tool in prenatal diagnosis and pregnancy follow-up. However, there is a significant variability of the position and orientation of the fetus in the MR images. This makes these images more difficult to analyze and interpret compared to standard adult MR imaging, which standardized anatomical imaging aligned planes. We address this issue by automatic localization of the fetal anatomy, in particular, the brain which is a structure of interest for many fetal MRI studies. We first extract superpixels followed by the computation of a histogram of features for each superpixel using bag of words based on dense scale invariant feature transform (DSIFT) descriptors. We construct a graph of superpixels and train a random forest classifier to distinguish between brain and non-brain superpixels. The localization framework has been tested on 55 MR datasets at gestational ages between 20–38 weeks. The proposed method was evaluated using 5-fold cross validation achieving a 94.55% brain detection accuracy rate.</p

    Fast motion compensation and super-resolution from multiple stacks of 2D slices

    No full text
    This tool implements a novel method for the correction of motion artifacts as acquired in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a defined amount of redundant information that is addressed with parallelized patch-wise optimization and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR’s computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have verified our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.This tool implements a novel method for the correction of motion artifacts as acquired in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a defined amount of redundant information that is addressed with parallelized patch-wise optimization and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR’s computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have verified our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.1.
    corecore