1,180 research outputs found
Topological Invariants for Polyacetylene, Kagome and Pyrochlore lattices
Adiabatic invariants by quantized Berry phases are defined for gapped
electronic systems in -dimensions (). This series includes
Polyacetylene, Kagome and Pyrochlore lattice respectively for and 3.
The invariants are quantum -multimer order parameters to characterize the
topological phase transitions by the multimerization. This fractional
quantization is protected by the global equivalence. As for the chiral
symmetric case, a topological form of the -invariant is explicitly given
as well.Comment: 4 pgages, 4 figure
Analysis of indoor environment and performance of net-zero energy building with vacuum glazed windows
The total energy and indoor thermal environment of an office building, which aims at the net-zero energy building, were measured and analysed. The annual total primary energy consumption of ‘Measurement’ was smaller than the value of ‘Calculation’ at design phase and achieved net-zero. The result of analysis of the thermal environment shows that the comfortable thermal environment was maintained. Also, the insulation performance and heat balance of the vacuum glazed windows in winter was evaluated. The overall heat transfer coefficients calculated by using the monitoring data were almost equal to the rated overall heat transfer coefficient and the high insulation performance of vacuum glazed windows was maintained even in the second year’s operation. In addition, the amount of heat gain due to solar radiation on the window surface was much larger than the amount of heat loss due to transmission. The vacuum glazed windows with high thermal insulation performance on the south side can reduce the heating load and contribute to the achievement of net-zero in the buildings
Universal relationship between crystallinity and irreversibility field of MgB2
The relationship between irreversibility field, Hirr, and crystallinity of
MgB2 bulks including carbon substituted samples was studied. The Hirr was found
to increase with an increase of FWHM of MgB2 (110) peak, which corresponds to
distortion of honeycomb boron sheet, and their universal correlation was
discovered even including carbon substituted samples. Excellent Jc
characteristics under high magnetic fields were observed in samples with large
FWHM of (110) due to the enhanced intraband scattering and strengthened grain
boundary flux pinning. The relationship between crystallinity and Hirr can
explain the large variation of Hirr for MgB2 bulks, tapes, single crystals and
thin films.Comment: 3 pages, 4 figures, to be published in Appl. Phys. Lett. (in press
Experimental analysis of vacuum pressure and gas flow rate in structured-core transparent vacuum insulation panels
The notion that modern buildings should strive to be net-zero energy buildings (NZEBs) is widely accepted. One of the causes leading to high energy usage for space heating, resulting in avoidable carbon emissions, is heat loss via building windows. In order to improve window’s insulation in existing buildings, structured-core transparent vacuum insulation panels (TVIPs) are proposed. TVIPs mainly consist of the structured core material, the low-emissivity film, and the transparent gas barrier envelope. TVIPs have high insulation performance and are inexpensive to manufacture and can be easily installed. Therefore, TVIPs have the potential to improve window’s insulation in existing buildings at a low cost. However, it is necessary to overcome the issue of preventing the pressure rise inside TVIP after vacuum sealing. The authors constructed an experimental setup to quantify the effect of reduction of gas flow rate in TVIP after evacuation by applying the pressure-rate-of-rise-method. In this experiment, a gas barrier film with a straw was used as the vacuum chamber. This could reproduce the pressure increase in the TVIP after sealing and the gas flow rate in the TVIP is evaluated. The experimental result shows that the coated core material and the enclosing getter agent lowered the pressure rise and gas flow rate in TVIP by combining concurrent evacuation and heating. Furthermore, after extending the simultaneous vacuuming and heating period to 8 h and applying the coated core material, and enclosing the getter agent, the internal pressure in TVIP may be lowered to around 1 Pa after 30 min after halting vacuuming. It was confirmed that this pressure satisfied the performance required for TVIPs, and the result was much closer to the realization of TVIPs
Analysis of indoor environment and insulation performance of residential house with double envelope vacuum insulation panels
Double envelope vacuum insulation panels (VIPs) have a possibility to significantly increase the service lifetime. In this paper, double envelope VIPs were produced and installed in the residential house. The performance of installed VIPs was evaluated by using the measuring data of heat flux meter. In addition, the total energy, the heating load and the indoor thermal environment of this house were measured and analysed. The average heating load and the average temperature difference between room temperature and ambient air temperature on the representative day was 2.49 kW and 29.9 oC, respectively. The heat loss coefficient per floor area was estimated as 0.69 W/(m2K) and it was almost the same as the value calculated at the time of design. The result of indoor environment measurement showed that the room temperature was maintained at around 20 oC and PMV was -0.5 oC or higher although the outside air temperature fluctuated between -5 oC and -10 oC. The effective thermal conductivities of double envelop VIPs were all estimated as 0.01 W/(mK) or less. It is considered that the insulation performance of the vacuum insulation panels is maintained
Thermal performance analysis of a new structured-core translucent vacuuminsulation panel in comparison to vacuum glazing: Experimental and theoretically validated analyses
The notion at which, nowadays, building sector is being recognized to be nearly zero-energy buildings (NZEBs) relies partly on the thermal performance of its fabric insulation. Vacuum glazing (VG) technology attracted the research interest as an option to reduce heat loss through windows. However, the total glazing thermal transmittance (U-value) for VG increases with the use of smaller glazing area due to the edge-seal effects, due to the thermal short-circuit around the edges and the overall construction cost of VG leading to an unaffordable option to deal with energy conservation of buildings. Therefore, this study aims to propose a new structured core transparent vacuum insulation panel (TVIP) to accomplish insulation for the windows without edge sealing effect, with lower cost and can be easily retrofitted to the conventional windows of the existing buildings. To do this, VG and TVIP were constructed and their thermal conductivity were measured using heat flow meter apparatus.
In addition, a 3D finite volume model considering the effect of surface to surface radiation, gas conduction, and thermal bridges through the spacer material and sealing material is developed. The model is validated
with the experiments in this work and with the data for VG in the literature. The effect of vacuum pressure increase is simulated to mimic the vacuum deterioration problem and the effect of glazing size on the
insulation performance of both VG and TVIP were investigated. The results indicate that for a smaller glazing area of less than 30 cm × 30 cm, the TVIP accomplished lower U-value compared with the VG at vacuum
pressure of 0.1 Pa and 1 Pa. While, at a vacuum pressure of 10 Pa, the TVIP attained a lower U-value over the entire range of the investigated glazing sizes. Further, the edge-seal effect in the VG is diminished with the use of TVIP. Furthermore, the material cost per unit area of the TVIP is three times less than the cost of VG at laboratory scale. The results of the current study can guide vacuum window designers and researchers to further enhance the performance of TVIP based window to compete for the VG in the markets
Internal magnetic field effect on magnetoelectricity in orthorhombic crystals
We have investigated the role of the 4 moment on the magnetoelectric (ME)
effect of orthorhombic MnO (=rare earth ions). In order to clarify
the role of the 4 moment, we prepared three samples: (Eu,Y)MnO without
the 4 moment, TbMnO with the anisotropic 4 moment, and
(Gd,Y)MnO with the isotropic 4 moment. The ferroelectric behaviors of
these samples are different from each other in a zero magnetic field.
(Eu,Y)MnO and (Gd,Y)MnO show the ferroelectric polarization along
the a axis in the ground state, while TbMnO shows it along the c axis.
Such difference may arise from the influence of the anisotropic Tb 4
moment. The direction of the ferroelectric polarization of MnO is
determined by the internal magnetic field arising from the 4 moment.Comment: 2 pages, 1 figure, the proceeding of International Conference of
Magnetism, to be published in the Journal of Magnetism and Magnetic Material
Structural Features of Layered Iron Pnictide Oxides (Fe2As2)(Sr4M2O6)
Structural features of newly found perovskite-based iron pnictide oxide
system have been systematically studied. Compared to REFePnO system,
perovskite-based system tend to have lower Pn-Fe-Pn angle and higher pnictogen
height owing to low electronegativity of alkaline earth metal and small
repulsive force between pnictogen and oxygen atoms. As-Fe-As angles of
(Fe2As2)(Sr4Cr2O6), (Fe2As2)(Sr4V2O6) and (Fe2Pn2)(Sr4MgTiO6) are close to
ideal tetrahedron and those pnictogen heights of about 1.40 A are close to
NdFeAsO with optimized carrier concentration. These structural features of this
system may leads to realization of high Tc superconductivity.Comment: 3pages, 2figures, 1table, proceedings of M2S 200
Geometry versus Entanglement in Resonating Valence Bond Liquids
We investigate the behavior of bipartite as well as genuine multipartite
entanglement of a resonating valence bond state on a ladder. We show that the
system possesses significant amounts of bipartite entanglement in the steps of
the ladder while no substantial bipartite entanglement is present in the rails.
Genuine multipartite entanglement present in the system is negligible. The
results are in stark contrast with the entanglement properties of the same
state on isotropic lattices in two and higher dimensions, indicating that the
geometry of the lattice can have important implications on the quality of
quantum information and other tasks that can be performed by using multiparty
states on that lattice.Comment: 6 pages, 8 figures, RevTeX
- …