3,616 research outputs found

    Exponential decay for the damped wave equation in unbounded domains

    Full text link
    We study the decay of the semigroup generated by the damped wave equation in an unbounded domain. We first prove under the natural geometric control condition the exponential decay of the semigroup. Then we prove under a weaker condition the logarithmic decay of the solutions (assuming that the initial data are smoother). As corollaries, we obtain several extensions of previous results of stabilisation and control

    Resonant inelastic x-ray scattering probes the electron-phonon coupling in the spin-liquid kappa-(BEDT-TTF)2Cu2(CN)3

    Full text link
    Resonant inelastic x-ray scattering at the N K edge reveals clearly resolved harmonics of the anion plane vibrations in the kappa-(BEDT-TTF)2Cu2(CN)3 spin-liquid insulator. Tuning the incoming light energy at the K edge of two distinct N sites permits to excite different sets of phonon modes. Cyanide CN stretching mode is selected at the edge of the ordered N sites which are more strongly connected to the BEDT-TTF molecules, while positionally disordered N sites show multi-mode excitation. Combining measurements with calculations on an anion plane cluster permits to estimate the sitedependent electron-phonon coupling of the modes related to nitrogen excitation

    Predicted FeII Emission-Line Strengths from Active Galactic Nuclei

    Full text link
    We present theoretical FeII emission line strengths for physical conditions typical of Active Galactic Nuclei with Broad-Line Regions. The FeII line strengths were computed with a precise treatment of radiative transfer using extensive and accurate atomic data from the Iron Project. Excitation mechanisms for the FeII emission included continuum fluorescence, collisional excitation, self-fluorescence amoung the FeII transitions, and fluorescent excitation by Lyman-alpha and Lyman-beta. A large FeII atomic model consisting of 827 fine structure levels (including states to E ~ 15 eV) was used to predict fluxes for approximately 23,000 FeII transitions, covering most of the UV, optical, and IR wavelengths of astrophysical interest. Spectral synthesis for wavelengths from 1600 Angstroms to 1.2 microns is presented. Applications of present theoretical templates to the analysis of observations are described. In particular, we discuss recent observations of near-IR FeII lines in the 8500 Angstrom -- 1 micron region which are predicted by the Lyman-alpha fluorescence mechanism. We also compare our UV spectral synthesis with an empirical iron template for the prototypical, narrow-line Seyfert galaxy I Zw 1. The theoretical FeII template presented in this work should also applicable to a variety of objects with FeII spectra formed under similar excitation conditions, such as supernovae and symbiotic stars.Comment: 33 pages, 15 postscript figure

    Research Impact Assessment: from ex post to real-time assessment

    Get PDF
    International audienceThis paper presents an ongoing research and development project to build research management tools based on real-time impactanalysis (the toolset is labelled ASIRPArt). The ambition is to use the lessons learned from ex post research impact assessment (RIA), building from the ASIRPA project which was launched in 2011. The ASIRPA approach is currently implemented on a routine base at the French public research organisation INRA (Institut National de la Recherche Agronomique). Therefore, the project draws on lessons learned from ex post RIA and the experience of researchers and actors involved in research programming. The aim of ASIRPArt is to design an approach and tools to help conduct research projects or programmes with the aim to amplify impacts. The challenge of the current project is to develop management tools based on a better understanding of the mechanisms that generate research impact. These tools will be coproduced with potential users. Given the uncertainty and complexity that characterise the transformation processes linked to research activities, we do not intend to design ballistic steering tools but to produce tools to foster learning processes, coordination and reflexivity of the actors involved. Our approach takes inspiration in different streams of literature

    Diffusion in pores and its dependence on boundary conditions

    Full text link
    We study the influence of the boundary conditions at the solid liquid interface on diffusion in a confined fluid. Using an hydrodynamic approach, we compute numerical estimates for the diffusion of a particle confined between two planes. Partial slip is shown to significantly influence the diffusion coefficient near a wall. Analytical expressions are derived in the low and high confinement limits, and are in good agreement with numerical results. These calculations indicate that diffusion of tagged particles could be used as a sensitive probe of the solid-liquid boundary conditions.Comment: soumis \`a J.Phys. Cond. Matt. special issue on "Diffusion in Liquids, Polymers, Biophysics and Chemical Dynamics

    Generalised Einstein Relation for Hot Brownian Motion

    Full text link
    The Brownian motion of a hot nanoparticle is described by an effective Markov theory based on fluctuating hydrodynamics. Its predictions are scrutinized over a wide temperature range using large-scale molecular dynamics simulations of a hot nanoparticle in a Lennard-Jones fluid. The particle positions and momenta are found to be Boltzmann distributed according to distinct effective temperatures THBMT_\mathrm{HBM} and TkT_\mathrm{k} . For THBMT_\mathrm{HBM} we derive a formally exact theoretical prediction and establish a generalised Einstein relation that links it to directly measurable quantities

    A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole

    Full text link
    Broad Fe II emission is a prominent feature of the optical and ultraviolet spectra of quasars. We report on a systematical investigation of optical Fe II emission in a large sample of 4037 z < 0.8 quasars selected from the Sloan Digital Sky Survey. We have developed and tested a detailed line-fitting technique, taking into account the complex continuum and narrow and broad emission-line spectrum. Our primary goal is to quantify the velocity broadening and velocity shift of the Fe II spectrum in order to constrain the location of the Fe II-emitting region and its relation to the broad-line region. We find that the majority of quasars show Fe II emission that is redshifted, typically by ~ 400 km/s but up to 2000 km/s, with respect to the systemic velocity of the narrow-line region or of the conventional broad-line region as traced by the Hbeta line. Moreover, the line width of Fe II is significantly narrower than that of the broad component of Hbeta. We show that the magnitude of the Fe II redshift correlates inversely with the Eddington ratio, and that there is a tendency for sources with redshifted Fe II emission to show red asymmetry in the Hbeta line. These characteristics strongly suggest that Fe II originates from a location different from, and most likely exterior to, the region that produces most of Hbeta. The Fe II-emitting zone traces a portion of the broad-line region of intermediate velocities whose dynamics may be dominated by infall.Comment: 20 pages, 14 figures, accepted for publication in Ap

    The Origin of Fe II Emission in AGN

    Get PDF
    We used a very large set of models of broad emission line (BEL) clouds in AGN to investigate the formation of the observed Fe II emission lines. We show that photoionized BEL clouds cannot produce both the observed shape and observed equivalent width of the 2200-2800A Fe II UV bump unless there is considerable velocity structure corresponding to a microturbulent velocity parameter v_turb > 100 km/s for the LOC models used here. This could be either microturbulence in gas that is confined by some phenomenon such as MHD waves, or a velocity shear such as in the various models of winds flowing off the surfaces of accretion disks. The alternative way that we can find to simultaneously match both the observed shape and equivalent width of the Fe II UV bump is for the Fe II emission to be the result of collisional excitation in a warm, dense gas. Such gas would emit very few lines other than Fe II. However, since the collisionally excited gas would constitute yet another component in an already complicated picture of the BELR, we prefer the model involving turbulence. In either model, the strength of Fe II emission relative to the emission lines of other ions such as Mg II depends as much on other parameters (either v_turb or the surface area of the collisionally excited gas) as it does on the iron abundance. Therefore, the measurement of the iron abundance from the FeII emission in quasars becomes a more difficult problem.Comment: 23 pages. Accepted by Ap

    Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Get PDF
    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a \blue{dissipative} plasmonic material. Correspondingly, the ESWs transmute from Dyakonov--Tamm surface waves into surface--plasmon--polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results
    corecore