293 research outputs found

    Development of the Forestomach of the Goat (Capra aegagrus f. hircus) in the Postnatal Period

    Full text link

    Spectroscopic Observations and Modelling of Impulsive Alfv\'en Waves Along a Polar Coronal Jet

    Full text link
    Using the Hinode/EIS 2"" spectroscopic observations, we study the intensity, velocity, and FWHM variations of the strongest Fe XII 195.12 \AA\ line along the jet to find the signature of Alfv\'en waves. We simulate numerically the impulsively generated Alfv\'en waves within the vertical Harris current-sheet, forming the jet plasma flows, and mimicking their observational signatures. Using the FLASH code and the atmospheric model with embedded weakly expanding magnetic field configuration within a vertical Harris current-sheet, we solve the two and half-dimensional (2.5-D) ideal magnetohydrodynamic (MHD) equations to study the evolution of Alfv\'en waves and vertical flows forming the plasma jet. At a height of ∼5 Mm\sim 5~\mathrm{Mm} from the base of the jet, the red-shifted velocity component of Fe XII 195.12 \AA\ line attains its maximum (5 km s−15~\mathrm{km\,s}^{-1}) which converts into a blue-shifted one between the altitude of 5−10 Mm5-10~\mathrm{Mm}. The spectral intensity continously increases up to 10 Mm10~\mathrm{Mm}, while FWHM still exhibits the low values with almost constant trend. This indicates that the reconnection point within the jet's magnetic field topology lies in the corona 5−10 Mm5-10~\mathrm{Mm} from its footpoint anchored in the Sun's surface. Beyond this height, FWHM shows a growing trend. This may be the signature of Alfv\'en waves that impulsively evolve due to reconnection and propagate along the jet. From our numerical data, we evaluate space- and time- averaged Alfv\'en waves velocity amplitudes at different heights in the jet's current-sheet, which contribute to the non-thermal motions and spectral line broadening. The synthetic width of Fe XII 195.12 A˚195.12~\mathrm{\AA} line exhibits similar trend of increment as in the observational data, possibly proving the existence of impulsively generated (by reconnection) Alfv\'en waves which propagate along the jet

    Assessment of production zones modelling accuracy based on satellite imaging and yield measurement of selected agriculture plot

    Get PDF
    ArticleCurrently, remote sensing or yield monitor equipment offer possibilities how to estimate productivity of the agriculture field. That is why the main aim of this study is to assess how the latest satellite images from vegetation season and final yield data from combine harvester can be used to predict yield and to assess site-specific zones productivity. The study is focused on the accuracy of these systems for the field productivity estimation. The 24.7 ha experimental field is located near to Vendoli village (the Czech Republic) and it is cultivated by conventional agricultural practices with emphasis on typical agricultural crops growing in the Czech Republic (winter wheat, spring barley and winter rape). The results showed that both methods of estimation can be used for yield prediction. Nevertheless, each of them need specific processing and has typical limitations

    Comparing RGB - based vegetation indices from UAV imageries to estimate hops canopy area

    Get PDF
    Remote estimation of hops plants in hop gardens is imperative in field of precision agriculture, because of precise imaging of hop garden structure. Monitoring of hop plant volume and area can help to predict the condition and yield of hops. In this study, two unmanned aerial vehicles (UAV) – eBee X senseFly UAV equipped with Red Green Blue (RGB) S.O.D.A. camera and Vertical Take-Off Landing (VTOL) UAV FireFly6 Pro by BirdsEyeView Aerobotics equipped with MicaSense RedEdge MX camera were used to acquire images of hop garden at phenology stage maturity of cones (24 th July) before harvest. Seven commonly used RGB vegetation indices (VI) were derived from these RGB and multispectral (MS) images after photogrammetric pre-processing and orthophoto mosaic extraction using Pix4Dmapper software. Vegetation Indices as the Green Percentage Index (G%), Excess of Green Index (ExGreen), Green Leaf Index (GLI), Visible Atmospherically Resistant Index (VARI), Red Green Blue Vegetation Index (RGBVI), Normalised Green Red Difference Index (NGRDI) and Triangular Greenness Index (TGI) were derived from both data sets. Binary model from each of VI was derived and threshold value for green vegetation was set. The results showed significant differences in hop plant area based on the specifications of cameras, especially wavelengths centres, and design and flight parameters of both UAV types. The comparison of various indices showed, that ExG and TGI indices has the highest congruity of estimated vegetation indices in hop garden canopy area for both used cameras. Further processing by Fuzzy Overlay tool proved high accuracy in green canopy area estimation for ExG and TGI vegetation indices

    Winter wheat, winter rape and poppy crop growth evaluation with the help of remote and proximal sensing measurements

    Get PDF
    Monitoring of agricultural crops with the help of remote and proximal sensors during the growing season plays important role for site-specific management decisions. Winter wheat, winter rape and poppy are representatives of typical agricultural crops from the family Poacea, Brassicaceae and Papaveraceae, growing in relative dry area of RakovnĂ­k district in the Czech Republic. Ten Sentinel 2 satellite images acquired during vegetation season of the crops were downloaded and processed. Crops were monitored with the help of unmanned aerial vehicles (UAV) equipped with consumer grade Red Green Blue (RGB) camera and multispectral (MS) MicaSense RedEdge MX camera. In-field variability was assessed by computing RGB-based vegetation indices Triangular Greenness Index (TGI), Green Leaf Index (GLI) and Visible Atmospherically Resistant Index (VARI) and commonly used vegetation indices as Normalised Difference Vegetation Index (NDVI) and Green NDVI (GNDVI). The results derived from satellite and UAV images were supported with in-situ measurements of hand-held GreenSeeker and Chlorophyll Meter Content sensors. The study showed the usability of individual vegetation indices, especially the TGI index for chlorophyll content estimation, and VARI index for green vegetation fraction detection and leaf area index estimation, in comparison with selected handheld devices. The results showed as well that leaf properties and canopy structure of typical characteristics of selected families can significantly influence the spectral response of the crops detected in different phenological stages

    The Minimum Shared Edges Problem on Grid-like Graphs

    Full text link
    We study the NP-hard Minimum Shared Edges (MSE) problem on graphs: decide whether it is possible to route pp paths from a start vertex to a target vertex in a given graph while using at most kk edges more than once. We show that MSE can be decided on bounded (i.e. finite) grids in linear time when both dimensions are either small or large compared to the number pp of paths. On the contrary, we show that MSE remains NP-hard on subgraphs of bounded grids. Finally, we study MSE from a parametrised complexity point of view. It is known that MSE is fixed-parameter tractable with respect to the number pp of paths. We show that, under standard complexity-theoretical assumptions, the problem parametrised by the combined parameter kk, pp, maximum degree, diameter, and treewidth does not admit a polynomial-size problem kernel, even when restricted to planar graphs

    A 1.8 mJ, picosecond Nd:YVO4 bounce amplifier pump front-end system for high-accuracy XUV-frequency comb spectroscopy

    Get PDF
    1 mu s, providing a promising pump laser system for parametric amplification and subsequent upconversion of near-infrared frequency combs to the extreme ultraviolet (XUV). (C) 2012 by Astro, Ltd

    Minimal Obstructions for Partial Representations of Interval Graphs

    Full text link
    Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation. Two linear-time algorithms are known for solving this problem. In this paper, we characterize the minimal obstructions which make partial representations non-extendible. This generalizes Lekkerkerker and Boland's characterization of the minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to a linear-time certifying algorithm for partial representation extension

    Quantum dynamics and statistics of two coupled down-conversion processes

    Full text link
    In the framework of Heisenberg-Langevin theory the dynamical and statistical effects arising from the linear interaction of two nondegenerate down-conversion processes are investigated. Using the strong-pumping approximation the analytical solution of equations of motion is calculated. The phenomena reminiscent of Zeno and anti-Zeno effects are examined. The possibility of phase-controlled and mismatch-controlled switching is illustrated.Comment: 17 pages, 7 figure

    Postmortal Diagnosis of Toxoplasmosis in Cats and Dogs

    Full text link
    • …
    corecore