169 research outputs found

    Experimental Philosophy of Pain

    Get PDF
    The standard view of pains among philosophers today is that their existence consists in being experienced. The typical line of support offered for this view is that it corresponds with the ordinary or commonsense conception of pain. Despite this, a growing body of evidence from experimental philosophers indicates that the ordinary understanding of pain stands in contrast to the standard view among philosophers. In this paper, we will survey this literature and add to it, detailing the results of seven new studies on the ordinary understanding of pain using both questionnaire and corpus analysis methods

    Thorn-Like Prickles and Heterophylly in \u3cem\u3eCyanea\u3c/em\u3e: Adaptations to Extinct Avian Browsers on Hawaii?

    Get PDF
    The evolution of thorn-like structures in plants on oceanic islands that lack mammalian and reptilian herbivores is puzzling, as is their tendency toward juvenile-adult leaf dimorphism. We propose that these traits arose in Cyanea (Campanul) on Hawaii as mechanical and visual defenses against herbivory by flightless geese and goose-like ducks that were extirpated by Polynesians within the last 1600 years. A chloroplast DNA phylogeny indicates that thorn-like prickles evolved at least four times and leaf dimorphism at least three times during the last 3.7 million years. The incidence of both traits increases from Oahu eastward toward younger islands, paralleling the distribution of avian species apparently adapted for browsing. The effectiveness of visual defenses against avian browsers (once dominant on many oceanic islands, based on the vagility of their ancestors) may provide a general explanation for insular heterophylly: the other islands on which this previously unexplained phenomenon is marked (New Zealand, New Caledonia, Madagascar, Mascarene Islands) are exactly those on which one or more large flightless avian browsers evolved

    The Explication Defence of Arguments from Reference

    Get PDF
    In a number of influential papers, Machery, Mallon, Nichols and Stich have presented a powerful critique of so-called arguments from reference, arguments that assume that a particular theory of reference is correct in order to establish a substantive conclusion. The critique is that, due to cross-cultural variation in semantic intuitions supposedly undermining the standard methodology for theorising about reference, the assumption that a theory of reference is correct is unjustified. I argue that the many extant responses to Machery et al.’s critique do little for the proponent of an argument from reference, as they do not show how to justify the problematic assumption. I then argue that it can in principle be justified by an appeal to Carnapian explication. I show how to apply the explication defence to arguments from reference given by Andreasen (for the biological reality of race) and by Churchland (against the existence of beliefs and desires)

    Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion

    Full text link
    We have cloned into plasmids 17 of 18 lettuce chloroplast DNA SacI fragments covering 96% of the genome. The cloned fragments were used to construct cleavage maps for 10 restriction enzymes for the chloroplast genomes of lettuce ( Lactuca sativa ) and Barnadesia caryophylla , two distantly related species in the sunflower family (Asteraceae). Both genomes are approximately 151 kb in size and contain a 25 kb inverted repeat. We also mapped the position and orientation of 37 chloroplast DNA genes. The mapping studies reveal that chloroplast DNAs of lettuce and Barnadesia differ by a 22 kb inversion in the large single copy region. Barnadesia has retained the primitive land plant genome arrangement, while the inversion has occurred in a lettuce lineage. The endpoints of the derived lettuce inversion were located by comparison to the well-characterized spinach and tobacco genomes. Both endpoints are located in intergenic spacers within tRNA gene clusters; one cluster being located downstream from the atpA gene and the other upstream from the psbD gene. The endpoint near the atpA gene is very close to one endpoint of a 20 kb inversion in wheat (Howe et al. 1983; Quigley and Weil 1985). Comparison of the restriction site maps gives an estimated sequence divergence of 3.7% for the lettuce and Barnadesia genomes. This value is relatively low compared to previous estimates for other angiosperm groups, suggesting a high degree of sequence conservation in the Asteraceae.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46961/1/294_2004_Article_BF00384619.pd

    Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL

    Get PDF
    We present the results of two exploratory parsimony analyses of DNA sequences from 475 and 499 species of seed plants, respectively, representing all major taxonomic groups. The data are exclusively from the chloroplast gene rbcL, which codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO or RuBPCase). We used two different state-transformation assumptions resulting in two sets of cladograms: (i) equal-weighting for the 499-taxon analysis; and (ii) a procedure that differentially weights transversions over transitions within characters and codon positions among characters for the 475-taxon analysis. The degree of congruence between these results and other molecular, as well as morphological, cladistic studies indicates that rbcL sequence variation contains historical evidence appropriate for phylogenetic analysis at this taxonomic level of sampling. Because the topologies presented are necessarily approximate and cannot be evaluated adequately for internal support, these results should be assessed from the perspective of their predictive value and used to direct future studies, both molecular and morphological. In both analyses, the three genera of Gnetales are placed together as the sister group of the flowering plants, and the anomalous aquatic Ceratophyllum (Ceratophyllaceae) is sister to all other flowering plants. Several major lineages identified correspond well with at least some recent taxonomic schemes for angiosperms, particularly those of Dahlgren and Thorne. The basalmost clades within the angiosperms are orders of the apparently polyphyletic subclass Magnoliidae sensu Cronquist. The most conspicuous feature of the topology is that the major division is not monocot versus dicot, but rather one correlated with general pollen type: uniaperturate versus triaperturate. The Dilleniidae and Hamamelidae are the only subclasses that are grossly polyphyletic; an examination of the latter is presented as an example of the use of these broad analyses to focus more restricted studies. A broadly circumscribed Rosidae is paraphyletic to Asteridae and Dilleniidae. Subclass Caryophyllidae is monophyletic and derived from within Rosidae in the 475-taxon analysis but is sister to a group composed of broadly delineated Asteridae and Rosidae in the 499-taxon study
    corecore