2 research outputs found

    Absence of a Finite-Temperature Melting Transition in the Classical Two-Dimensional One-Component Plasma

    Full text link
    Vortices in thin-film superconductors are often modelled as a system of particles interacting via a repulsive logarithmic potential. Arguments are presented to show that the hypothetical (Abrikosov) crystalline state for such particles is unstable at any finite temperature against proliferation of screened disclinations. The correlation length of crystalline order is predicted to grow as 1/T\sqrt{1/T} as the temperature TT is reduced to zero, in excellent agreement with our simulations of this two-dimensional system.Comment: 3 figure

    Simulations of Two-Dimensional Melting on the Surface of a Sphere

    Get PDF
    We have simulated a system of classical particles confined on the surface of a sphere interacting with a repulsive r−12r^{-12} potential. The same system simulated on a plane with periodic boundary conditions has van der Waals loops in pressure-density plots which are usually interpreted as evidence for a first order melting transition, but on the sphere such loops are absent. We also investigated the structure factor and from the width of the first peak as a function of density we can show that the growth of the correlation length is consistent with KTHNY theory. This suggests that simulations of two dimensional melting phenomena are best performed on the surface of a sphere.Comment: 4 eps figure
    corecore