10,426 research outputs found

    Elliptic flow of the dilute Fermi gas: From kinetics to hydrodynamics

    Full text link
    We use the Boltzmann equation in the relaxation time approximation to study the expansion of a dilute Fermi gas at unitarity. We focus, in particular, on the approach to the hydrodynamic limit. Our main finding are: i) In the regime that has been studied experimentally hydrodynamic effects beyond the Navier-Stokes approximation are small, ii) mean field corrections to the Boltzmann equation are not important, iii) experimental data imply that freezeout occurs very late, that means that the relaxation time remains smaller than the expansion time during the entire evolution of the system, iv) the experimental results also imply that the bulk viscosity is significantly smaller than the shear viscosity of the system.Comment: 18 pages, 6 figure

    Corrections to scaling in multicomponent polymer solutions

    Full text link
    We calculate the correction-to-scaling exponent ωT\omega_T that characterizes the approach to the scaling limit in multicomponent polymer solutions. A direct Monte Carlo determination of ωT\omega_T in a system of interacting self-avoiding walks gives ωT=0.415(20)\omega_T = 0.415(20). A field-theory analysis based on five- and six-loop perturbative series leads to ωT=0.41(4)\omega_T = 0.41(4). We also verify the renormalization-group predictions for the scaling behavior close to the ideal-mixing point.Comment: 21 page

    Femtosecond Coherent Control of Spin with Light in (Ga,Mn)As ferromagnets

    Full text link
    Using density matrix equations of motion, we predict a femtosecond collective spin tilt triggered by nonlinear, near--ultraviolet (∌\sim3eV), coherent photoexcitation of (Ga,Mn)As ferromagnetic semiconductors with linearly polarized light. This dynamics results from carrier coherences and nonthermal populations excited in the \{111\} equivalent directions of the Brillouin zone and triggers a subsequent uniform precession. We predict nonthermal magnetization control by tuning the laser frequency and polarization direction. Our mechanism explains recent ultrafast pump--probe experiments.Comment: 4 pages, 3 figures, published in Physical Review Letter

    Dynamics of photoinduced Charge Density Wave-metal phase transition in K0.3MoO3

    Full text link
    We present first systematic studies of the photoinduced phase transition from the ground charge density wave (CDW) state to the normal metallic (M) state in the prototype quasi-1D CDW system K0.3MoO3. Ultrafast non-thermal CDW melting is achieved at the absorbed energy density that corresponds to the electronic energy difference between the metallic and CDW states. The results imply that on the sub-picosecond timescale when melting and subsequent initial recovery of the electronic order takes place the lattice remains unperturbed.Comment: Phys. Rev. Lett., accepted for publicatio

    Superdense Matter

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss the use of weak coupling methods. We study the phase structure as a function of the number of flavors and their masses. We also introduce effective theories that describe low energy excitations at high baryon density. Finally, we study the possibility of kaon condensation at very large baryon density.Comment: 13 pages, talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; to appear in the proceeding

    QCD and the eta prime Mass: Instantons or Confinement?

    Full text link
    We argue that lattice calculations of the ηâ€Č\eta' mass in QCD with Nc=2N_c=2 colors performed at non-zero baryon chemical potential can be used to study the mechanism responsible for the mass of the ηâ€Č\eta'. QCD with two colors is an ideal laboratory because it exhibits confinement, chiral symmetry breaking and a would-be U(1)AU(1)_A Goldstone boson at all densities. Since the instanton density and the confinement scale vary with density in a very different way, instantons are clearly distinguishable from other possible mechanisms. There is an instanton prediction for the ηâ€Č\eta' mass at large density that can be compared to lattice results. The density dependence of the instanton contribution is a simple consequence of the integer topological charge carried by the instanton. We also argue that Nc=3N_c=3 color QCD at finite isospin density can be used in order to study the origin of OZI-violation in the scalar sector.Comment: 6 pages, 2 figure

    Magnetic field stabilization system for atomic physics experiments

    Full text link
    Atomic physics experiments commonly use millitesla-scale magnetic fields to provide a quantization axis. As atomic transition frequencies depend on the amplitude of this field, many experiments require a stable absolute field. Most setups use electromagnets, which require a power supply stability not usually met by commercially available units. We demonstrate stabilization of a field of 14.6 mT to 4.3 nT rms noise (0.29 ppm), compared to noise of ≳\gtrsim 100 nT without any stabilization. The rms noise is measured using a field-dependent hyperfine transition in a single 43^{43}Ca+^+ ion held in a Paul trap at the centre of the magnetic field coils. For the 43^{43}Ca+^+ "atomic clock" qubit transition at 14.6 mT, which depends on the field only in second order, this would yield a projected coherence time of many hours. Our system consists of a feedback loop and a feedforward circuit that control the current through the field coils and could easily be adapted to other field amplitudes, making it suitable for other applications such as neutral atom traps.Comment: 6 pages, 5 figure
    • 

    corecore