182,239 research outputs found

    Nd-doped aluminum oxide integrated amplifiers at 880 nm, 1060 nm, and 1330 nm

    Get PDF
    Neodymium-doped Al2O3 layers were deposited on thermally oxidized Si substrates and channel waveguides were patterned using reactive-ion etching. Internal net gain on the Nd3+ transitions at 880, 1064, and 1330 nm was investigated,\ud yielding a maximum gain of 6.3 dB/cm at 1064 nm. Values for the energy-transfer upconversion parameter for different Nd3+\ud concentrations were deduced

    Spin relaxation in diluted magnetic semiconductor quantum dots

    Full text link
    Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength and lateral diameter, while it shows non-monotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.Comment: 11 pages, 11 figures, to be published in Phys. Rev.

    Electroluminescence and photoluminescence of Ge-implanted Si/SiO_2/Si structures

    Get PDF
    Electroluminescent devices were fabricated in SiO_2 films containing Ge nanocrystals formed by ion implantation and precipitation during annealing at 900 °C, and the visible room‐temperature electroluminescence and photoluminescence spectra were found to be broadly similar. The electroluminescent devices have an onset for emission in reverse bias of approximately −10 V, suggesting that the mechanism for carrier excitation may be an avalanche breakdown caused by injection of hot carriers into the oxide. The electroluminescent emission was stable for periods exceeding 6 h

    Renormalizability of the nuclear many-body problem with the Skyrme interaction beyond mean field

    Full text link
    Phenomenological effective interactions like Skyrme forces are currently used in mean--field calculations in nuclear physics. Mean--field models have strong analogies with the first order of the perturbative many--body problem and the currently used effective interactions are adjusted at the mean--field level. In this work, we analyze the renormalizability of the nuclear many--body problem in the case where the effective Skyrme interaction is employed in its standard form and the perturbative problem is solved up to second order. We focus on symmetric nuclear matter and its equation of state, which can be calculated analytically at this order. It is shown that only by applying specific density dependence and constraints to the interaction parameters could renormalizability be guaranteed in principle. This indicates that the standard Skyrme interaction does not in general lead to a renormalizable theory. For achieving renormalizability, other terms should be added to the interaction and employed perturbatively only at first order.Comment: Revised versio

    Single/Few Bunch Space Charge Effects at 8-GeV in the Fermilab Main Injector

    Get PDF
    For Project X, it is planned to inject a beam of 3x10**11 particles per bunch into the Main Injector. Therefore, at 8-GeV, there will be increased space charge tune shifts and an increased incoherent tune spread. In preparation for these higher intensity bunches exploratory studies have commenced looking at the transmission of different intensity bunches at different tunes. An experiment is described with results for bunch intensities between 20 and 300 10**9 particles. To achieve the highest intensity bunches coalescing at 8-GeV is required, resulting in a longer bunch length. Comparisons show that similar transmission curves are obtained when the intensity and bunch length have increased by factors of 3.2 and 3.4 respectively, indicating the incoherent tune shifts are similar, as expected from theory. The results of these experiments will be used in conjugation with simulations to further study high intensity bunches in the Main Injector.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    A note on the sign (unit root) ambiguities of Gauss sums in index 2 and 4 cases

    Full text link
    Recently, the explicit evaluation of Gauss sums in the index 2 and 4 cases have been given in several papers (see [2,3,7,8]). In the course of evaluation, the sigh (or unit root) ambiguities are unavoidably occurred. This paper presents another method, different from [7] and [8], to determine the sigh (unit root) ambiguities of Gauss sums in the index 2 case, as well as the ones with odd order in the non-cyclic index 4 case. And we note that the method in this paper are more succinct and effective than [8] and [7]
    • 

    corecore