296 research outputs found

    Gravitational Laser Back-Scattering

    Full text link
    A possible way of producing gravitons in the laboratory is investigated. We evaluate the cross section electron + photon →\rightarrow electron + graviton in the framework of linearized gravitation, and analyse this reaction considering the photon coming either from a laser beam or from a Compton back-scattering process.Comment: 11 pages, 2 figures (available upon request), RevTeX, IFT-P.03/9

    CP Violation in the Top-Quark Pair Production at a Next Linear Collider

    Get PDF
    We provide a detailed, model-independent, study for CP violation effects due to the T-odd top-quark electric dipole moment (EDM) and weak dipole moment (WDM) in the top-quark pair production via e+e−e^+e^- and two-photon annihilation at a next e+e−e^+e^- linear collider (NLC). There are two methods in detecting CP violation effects in these processes. One method makes use of measurements of various spin correlations in the final decay products of the produced top-quark pair, while the other is to measure various CP-odd polarization asymmetry effects of the initial states. In the e+e−e^+e^- case only the first method can be used, and in the γγ\gamma\gamma case both methods can be employed. We provide a complete classification of angular correlations of the tt and tˉ\bar{t} decay products under CP and CP\tilde{T} which greatly faciliate CP tests in the e+e−e^+e^- mode. Concentrating on the second method with the Compton back-scattered high-energetic laser light off the electron or positron beam in the two-photon mode, we construct two CP-odd and CP\tilde{T}-even initial polarization configurations and apply them to investigating CP-violating effects due to the top-quark EDM. With a typical set of experimental parameters at the NLC, we compare the 1-\sigma sensitivities to the top-quark EDM and WDM in the e+e−e^+e^- mode and the two-photon mode. Some model expectation values of the T-odd parameters are compared with the results.Comment: 45 pages(LaTeX), 10 eps figures, uses epsfig.st

    Spectroscopy of doubly charmed baryons: Ξcc+\Xi_{cc}^{+} and Ξcc++\Xi_{cc}^{++}

    Full text link
    Using the quark-diquark approximation in the framework of Buchm\" uller-Tye potential model, we investigate the spectroscopy of doubly charmed baryons: Ξcc++\Xi_{cc}^{++} and Ξcc+\Xi_{cc}^{+}. Our results include the masses, parameters of radial wave functions of states with the different excitations of both diquark and light quark-diquark system. We calculate the values of fine and hyperfine splittings of these levels and discuss some new features, connected to the identity of heavy quarks, in the dynamics of hadronic and radiative transitions between the states of these baryons.Comment: 10 pages, Latex file, 1 fig, corrected some typo

    Magnetic Moments of the Baryon Decuplet in a Relativistic Quark Model

    Full text link
    The magnetic moments of the baryon decuplet are calculated in a relativistic constituent quark model using the light-front formalism. Of particular interest are the magnetic moments of the Ω−\Omega^- and Δ++\Delta^{++} for which new recent experimental measurements are available. Our calculation for the magnetic moment ratio ÎŒ(Δ++)/ÎŒ(p)\mu(\Delta^{++})/\mu(p) is in excellent agreement with the experimental ratio, while our ratio ÎŒ(Ω−)/ÎŒ(Λ0)\mu(\Omega^-)/\mu(\Lambda^0) is slightly higher than the experimental ratio.Comment: 10 pages ReVTeX, SLAC-PUB-621

    SUSY-induced FCNC top-quark processes at the Large Hadron Collider

    Get PDF
    We systematically calculate various flavor-changing neutral-current top-quark processes induced by supersymmetry at the Large Hadron Collider, which include five decay modes and six production channels. To reveal the characteristics of these processes, we first compare the dependence of the rates for these channels on the relevant supersymmetric parameters, then we scan the whole parameter space to find their maximal rates, including all the direct and indirect current experimental constraints on the scharm-stop flavor mixings. We find that, under all these constraints, only a few channels, through cg->t at parton-level and t-> ch, may be observable at the Large Hadron Collider

    Outcome from Spontaneous CP Violation for B Decays

    Full text link
    In the aspon model solution of the strong CPCP problem, there is a gauged U(1)U(1) symmetry, spontaneously broken by the same vacuum expectation value which breaks CPCP, whose massive gauge boson provides an additional mechanism of weak CPCP violation. We calculate the CPCP asymmetries in BB decays for the aspon model and show that they are typically smaller than those predicted from the standard model. A linear relation between the CPCP asymmetries of different decay processes is obtained.Comment: REVTEX, 9 pages, IFP-486-UNC, NSF-PT-94-1, and UDHEP-01-9

    Fermionic decays of sfermions: a complete discussion at one-loop order

    Full text link
    We present a definition of an on-shell renormalization scheme for the sfermion and chargino-neutralino sector of the Minimal Supersymmetric Standard Model (MSSM). Then, apply this renormalization framework to the interaction between charginos/neutralinos and sfermions. A kind of universal corrections is identified, which allow to define effective chargino/neutralino coupling matrices. In turn, these interactions generate (universal) non-decoupling terms that grow as the logarithm of the heavy mass. Therefore the full MSSM spectrum must be taken into account in the computation of radiative corrections to observables involving these interactions. As an application we analyze the full one-loop electroweak radiative corrections to the partial decay widths \Gamma(\tilde{f} -> f\neut) and \Gamma(\tilde{f} -> f'\cplus) for all sfermion flavours and generations. These are combined with the QCD corrections to compute the corrected branching ratios of sfermions. It turns out that the electroweak corrections can have an important impact on the partial decay widths, as well as the branching ratios, in wide regions of the parameter space. The precise value of the corrections is strongly dependent on the correlation between the different particle masses.Comment: LaTeX 53 pages, 22 figures, 3 tables. Typos correcte

    Probing scalar particle and unparticle couplings in e+ e- -> t tbar with transversely polarized beams

    Full text link
    In searching for indications of new physics scalar particle and unparticle couplings in e^+ e^- \to t\bar t, we consider the role of transversely polarized initial beams at e^+ e^- colliders. By using a general relativistic spin density matrix formalism for describing the particles spin states, we find analytical expressions for the squared amplitude of the process with t or \bar t polarization measured, including the anomalous coupling contributions. Thanks to the transversely polarized initial beams these contributions are first order anomalous coupling corrections to the Standard Model (SM) contributions. We present and analyse the main features of the SM and anomalous coupling contributions. We show how differences between SM and anomalous coupling contributions provide means to search for anomalous coupling manifestations at future e^+ e^- linear colliders.Comment: 28 pages in LaTeX, including 7 encapsulated PostScript figures, published versio
    • 

    corecore