2,273 research outputs found

    Nuclear burst plasma injection into the magnetosphere and resulting spacecraft charging

    Get PDF
    The passage of debris from a high altitude ( 400 km) nuclear burst over the ionospheric plasma is found to be capable of exciting large amplitude whistler waves which can act to structure a collisionless shock. This instability will occur in the loss cone exits of the nuclear debris bubble, and the accelerated ambient ions will freestream along the magnetic field lines into the magnetosphere. Using Starfish-like parameters and accounting for plasma diffusion and thermalization of the propagating plasma mass, it is found that synchronous orbit plasma fluxes of high temperature electrons (near 10 keV) will be significantly greater than those encountered during magnetospheric substorms. These fluxes will last for sufficiently long periods of time so as to charge immersed bodies to high potentials and arc discharges to take place

    Correlational Origin of the Roton Minimum

    Full text link
    We present compelling evidence supporting the conjecture that the origin of the roton in Bose-condensed systems arises from strong correlations between the constituent particles. By studying the two dimensional bosonic dipole systems a paradigm, we find that classical molecular dynamics (MD) simulations provide a faithful representation of the dispersion relation for a low- temperature quantum system. The MD simulations allow one to examine the effect of coupling strength on the formation of the roton minimum and to demonstrate that it is always generated at a sufficiently high enough coupling. Moreover, the classical images of the roton-roton, roton-maxon, etc. states also appear in the MD simulation spectra as a consequence of the strong coupling.Comment: 7 pages, 4 figure

    Collective Modes in Strongly Coupled Elecronic Bilayer Liquids

    Full text link
    We present the first reliable calculation of the collective mode structure of a strongly coupled electronic bilayer. The calculation is based on a classical model through the 3rd3^{rd} frequency-moment-sum-rule preserving Quasi Localized Charge Approximation, using the recently calculated Hypernetted Chain pair correlation functions. The spectrum shows an energy gap at k=0k=0 and the absence of a previously conjectured dynamical instability.Comment: 4 pages, 4 .ps figure

    Collective excitations in electron-hole bilayers

    Full text link
    We report a combined analytic and Molecular Dynamics analysis of the collective mode spectrum of an electron-hole (bipolar) bilayer in the strong coupling quasi-classical limit. A robust, isotropic energy gap is identified in the out-of-phase spectra, generated by the combined effect of correlations and of the excitation of the bound dipoles; the in-phase spectra exhibit a correlation governed acoustic dispersion for the longitudinal and transverse modes. Strong nonlinear generation of higher harmonics of the fundamental dipole oscillation frequency and the transfer of harmonics between different modes is observed. The mode dispersions in the liquid state are compared with the phonon spectrum in the crystalline solid phase, reinforcing a coherent physical picture.Comment: 4 pages, 5 figure

    Coulomb blockade of strongly coupled quantum dots studied via bosonization of a channel with a finite barrier

    Full text link
    A pair of quantum dots, coupled through a point contact, can exhibit Coulomb blockade effects that reflect an oscillatory term in the dots' total energy whose value depends on whether the total number of electrons on the dots is even or odd. The effective energy associated with this even-odd alternation is reduced, relative to the bare Coulomb blockade energy for uncoupled dots, by a factor (1-f) that decreases as the interdot coupling is increased. When the transmission coefficient for interdot electronic motion is independent of energy and the same for all channels within the point contact (which are assumed uncoupled), the factor (1-f) takes on a universal value determined solely by the number of channels and the dimensionless conductance g of each individual channel. This paper studies corrections to the universal value of (1-f) that result when the transmission coefficent varies over energy scales of the size of the bare Coulomb blockade energy. We consider a model in which the point contact is described by a single orbital channel containing a parabolic barrier potential, and we calculate the leading correction to (1-f) for one-channel (spin-split) and two-channel (spin-degenerate) point contacts in the limit where the single orbital channel is almost completely open. By generalizing a previously used bosonization technique, we find that, for a given value of the dimensionless conductance g, the value of (1-f) is increased relative to its value for a zero-thickness barrier, but the absolute value of the increase is small in the region where our calculations apply.Comment: 13 pages, 3 Postscript figure

    Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier

    Full text link
    Building upon earlier work on the relation between the dimensionless interdot channel conductance g and the fractional Coulomb-blockade peak splitting f for two electrostatically equivalent dots, we calculate the leading correction that results from an interdot tunneling barrier that is not a delta-function but, rather, has a finite height V and a nonzero width xi and can be approximated as parabolic near its peak. We develop a new treatment of the problem for g much less than 1 that starts from the single-particle eigenstates for the full coupled-dot system. The finiteness of the barrier leads to a small upward shift of the f-versus-g curve at small values of g. The shift is a consequence of the fact that the tunneling matrix elements vary exponentially with the energies of the states connected. Therefore, when g is small, it can pay to tunnel to intermediate states with single-particle energies above the barrier height V. The correction to the zero-width behavior does not affect agreement with recent experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript figures included using eps
    corecore