2,308 research outputs found
Nuclear burst plasma injection into the magnetosphere and resulting spacecraft charging
The passage of debris from a high altitude ( 400 km) nuclear burst over the ionospheric plasma is found to be capable of exciting large amplitude whistler waves which can act to structure a collisionless shock. This instability will occur in the loss cone exits of the nuclear debris bubble, and the accelerated ambient ions will freestream along the magnetic field lines into the magnetosphere. Using Starfish-like parameters and accounting for plasma diffusion and thermalization of the propagating plasma mass, it is found that synchronous orbit plasma fluxes of high temperature electrons (near 10 keV) will be significantly greater than those encountered during magnetospheric substorms. These fluxes will last for sufficiently long periods of time so as to charge immersed bodies to high potentials and arc discharges to take place
Correlational Origin of the Roton Minimum
We present compelling evidence supporting the conjecture that the origin of
the roton in Bose-condensed systems arises from strong correlations between the
constituent particles. By studying the two dimensional bosonic dipole systems a
paradigm, we find that classical molecular dynamics (MD) simulations provide a
faithful representation of the dispersion relation for a low- temperature
quantum system. The MD simulations allow one to examine the effect of coupling
strength on the formation of the roton minimum and to demonstrate that it is
always generated at a sufficiently high enough coupling. Moreover, the
classical images of the roton-roton, roton-maxon, etc. states also appear in
the MD simulation spectra as a consequence of the strong coupling.Comment: 7 pages, 4 figure
Collective Modes in Strongly Coupled Elecronic Bilayer Liquids
We present the first reliable calculation of the collective mode structure of
a strongly coupled electronic bilayer. The calculation is based on a classical
model through the frequency-moment-sum-rule preserving Quasi Localized
Charge Approximation, using the recently calculated Hypernetted Chain pair
correlation functions. The spectrum shows an energy gap at and the
absence of a previously conjectured dynamical instability.Comment: 4 pages, 4 .ps figure
Collective excitations in electron-hole bilayers
We report a combined analytic and Molecular Dynamics analysis of the
collective mode spectrum of an electron-hole (bipolar) bilayer in the strong
coupling quasi-classical limit. A robust, isotropic energy gap is identified in
the out-of-phase spectra, generated by the combined effect of correlations and
of the excitation of the bound dipoles; the in-phase spectra exhibit a
correlation governed acoustic dispersion for the longitudinal and transverse
modes. Strong nonlinear generation of higher harmonics of the fundamental
dipole oscillation frequency and the transfer of harmonics between different
modes is observed. The mode dispersions in the liquid state are compared with
the phonon spectrum in the crystalline solid phase, reinforcing a coherent
physical picture.Comment: 4 pages, 5 figure
Coulomb blockade of strongly coupled quantum dots studied via bosonization of a channel with a finite barrier
A pair of quantum dots, coupled through a point contact, can exhibit Coulomb
blockade effects that reflect an oscillatory term in the dots' total energy
whose value depends on whether the total number of electrons on the dots is
even or odd. The effective energy associated with this even-odd alternation is
reduced, relative to the bare Coulomb blockade energy for uncoupled dots, by a
factor (1-f) that decreases as the interdot coupling is increased. When the
transmission coefficient for interdot electronic motion is independent of
energy and the same for all channels within the point contact (which are
assumed uncoupled), the factor (1-f) takes on a universal value determined
solely by the number of channels and the dimensionless conductance g of each
individual channel.
This paper studies corrections to the universal value of (1-f) that result
when the transmission coefficent varies over energy scales of the size of the
bare Coulomb blockade energy. We consider a model in which the point contact is
described by a single orbital channel containing a parabolic barrier potential,
and we calculate the leading correction to (1-f) for one-channel (spin-split)
and two-channel (spin-degenerate) point contacts in the limit where the single
orbital channel is almost completely open. By generalizing a previously used
bosonization technique, we find that, for a given value of the dimensionless
conductance g, the value of (1-f) is increased relative to its value for a
zero-thickness barrier, but the absolute value of the increase is small in the
region where our calculations apply.Comment: 13 pages, 3 Postscript figure
Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier
Building upon earlier work on the relation between the dimensionless interdot
channel conductance g and the fractional Coulomb-blockade peak splitting f for
two electrostatically equivalent dots, we calculate the leading correction that
results from an interdot tunneling barrier that is not a delta-function but,
rather, has a finite height V and a nonzero width xi and can be approximated as
parabolic near its peak. We develop a new treatment of the problem for g much
less than 1 that starts from the single-particle eigenstates for the full
coupled-dot system. The finiteness of the barrier leads to a small upward shift
of the f-versus-g curve at small values of g. The shift is a consequence of the
fact that the tunneling matrix elements vary exponentially with the energies of
the states connected. Therefore, when g is small, it can pay to tunnel to
intermediate states with single-particle energies above the barrier height V.
The correction to the zero-width behavior does not affect agreement with recent
experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the
universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript
figures included using eps
- …