4,308 research outputs found

    Hanbury Brown-Twiss Interferometry for Fractional and Integer Mott Phases

    Full text link
    Hanbury-Brown-Twiss interferometry (HBTI) is used to study integer and fractionally filled Mott Insulator (MI) phases in period-2 optical superlattices. In contrast to the quasimomentum distribution, this second order interferometry pattern exhibits high contrast fringes in the it insulating phases. Our detailed study of HBTI suggests that this interference pattern signals the various superfluid-insulator transitions and therefore can be used as a practical method to determine the phase diagram of the system. We find that in the presence of a confining potential the insulating phases become robust as they exist for a finite range of atom numbers. Furthermore, we show that in the trapped case the HBTI interferogram signals the formation of the MI domains and probes the shell structure of the system.Comment: 13 pages, 15 figure

    Lagrangian fibrations of holomorphic-symplectic varieties of K3^[n]-type

    Full text link
    Let X be a compact Kahler holomorphic-symplectic manifold, which is deformation equivalent to the Hilbert scheme of length n subschemes of a K3 surface. Let L be a nef line-bundle on X, such that the 2n-th power of c_1(L) vanishes and c_1(L) is primitive. Assume that the two dimensional subspace H^{2,0}(X) + H^{0,2}(X), of the second cohomology of X with complex coefficients, intersects trivially the integral cohomology. We prove that the linear system of L is base point free and it induces a Lagrangian fibration on X. In particular, the line-bundle L is effective. A determination of the semi-group of effective divisor classes on X follows, when X is projective. For a generic such pair (X,L), not necessarily projective, we show that X is bimeromorphic to a Tate-Shafarevich twist of a moduli space of stable torsion sheaves, each with pure one dimensional support, on a projective K3 surface.Comment: 34 pages. v3: Reference [Mat5] and Remark 1.8 added. Incorporated improvement to the exposition and corrected typos according to the referees suggestions. To appear in the proceedings of the conference Algebraic and Complex Geometry, Hannover 201

    The dynamic model of enterprise revenue management

    Get PDF
    The article presents the dynamic model of enterprise revenue management. This model is based on the quadratic criterion and linear control law. The model is founded on multiple regression that links revenues with the financial performance of the enterprise. As a result, optimal management is obtained so as to provide the given enterprise revenue, namely, the values of financial indicators that ensure the planned profit of the organization are acquired

    Quantum Non-Demolition Detection of Strongly Correlated Systems

    Full text link
    Preparation, manipulation, and detection of strongly correlated states of quantum many body systems are among the most important goals and challenges of modern physics. Ultracold atoms offer an unprecedented playground for realization of these goals. Here we show how strongly correlated states of ultracold atoms can be detected in a quantum non-demolition scheme, that is, in the fundamentally least destructive way permitted by quantum mechanics. In our method, spatially resolved components of atomic spins couple to quantum polarization degrees of freedom of light. In this way quantum correlations of matter are faithfully mapped on those of light; the latter can then be efficiently measured using homodyne detection. We illustrate the power of such spatially resolved quantum noise limited polarization measurement by applying it to detect various standard and "exotic" types of antiferromagnetic order in lattice systems and by indicating the feasibility of detection of superfluid order in Fermi liquids.Comment: Published versio

    Coarse-Grained Finite-Temperature Theory for the Condensate in Optical Lattices

    Full text link
    In this work, we derive a coarse-grained finite-temperature theory for a Bose condensate in a one-dimensional optical lattice, in addition to a confining harmonic trap potential. We start from a two-particle irreducible (2PI) effective action on the Schwinger-Keldysh closed-time contour path. In principle, this action involves all information of equilibrium and non-equilibrium properties of the condensate and noncondensate atoms. By assuming an ansatz for the variational function, i.e., the condensate order parameter in an effective action, we derive a coarse-grained effective action, which describes the dynamics on the length scale much longer than a lattice constant. Using the variational principle, coarse-grained equations of motion for the condensate variables are obtained. These equations include a dissipative term due to collisions between condensate and noncondensate atoms, as well as noncondensate mean-field. To illustrate the usefulness of our formalism, we discuss a Landau instability of the condensate in optical lattices by using the coarse-grained generalized Gross-Pitaevskii hydrodynamics. We found that the collisional damping rate due to collisions between the condensate and noncondensate atoms changes sign when the condensate velocity exceeds a renormalized sound velocity, leading to a Landau instability consistent with the Landau criterion. Our results in this work give an insight into the microscopic origin of the Landau instability.Comment: 38 pages, 2 figures. Submitted to Journal of Low Temperature Physic
    corecore