58 research outputs found

    Accelerating two projection methods via perturbations with application to Intensity-Modulated Radiation Therapy

    Full text link
    Constrained convex optimization problems arise naturally in many real-world applications. One strategy to solve them in an approximate way is to translate them into a sequence of convex feasibility problems via the recently developed level set scheme and then solve each feasibility problem using projection methods. However, if the problem is ill-conditioned, projection methods often show zigzagging behavior and therefore converge slowly. To address this issue, we exploit the bounded perturbation resilience of the projection methods and introduce two new perturbations which avoid zigzagging behavior. The first perturbation is in the spirit of kk-step methods and uses gradient information from previous iterates. The second uses the approach of surrogate constraint methods combined with relaxed, averaged projections. We apply two different projection methods in the unperturbed version, as well as the two perturbed versions, to linear feasibility problems along with nonlinear optimization problems arising from intensity-modulated radiation therapy (IMRT) treatment planning. We demonstrate that for all the considered problems the perturbations can significantly accelerate the convergence of the projection methods and hence the overall procedure of the level set scheme. For the IMRT optimization problems the perturbed projection methods found an approximate solution up to 4 times faster than the unperturbed methods while at the same time achieving objective function values which were 0.5 to 5.1% lower.Comment: Accepted for publication in Applied Mathematics & Optimizatio

    On the Asymptotic Average Number of Efficient Vertices in Multiple Objective Linear Programming

    Get PDF
    AbstractLeta1,…,am,c1,…,ckbe independent random points in Rnthat are identically distributed spherically symmetrical in Rnand letX≔{x∈Rn|aTix⩽1,i=1,…,m} be the associated random polyhedron form⩾n⩾2. We consider multiple objective linear programming problems maxx∈XcT1x, maxx∈XcT2x,…,maxx∈XcTkxwith 1⩽k⩽n. For distributions with algebraically decreasing tail in the unit ball, we investigate the asymptotic expected number of vertices in the efficient frontier ofXwith respect toc1,…,ckfor fixedn,kandm→∞. This expected number of efficient vertices is the most significant indicator for the average-case complexity of the multiple objective linear programming problem

    Costlets: A Generalized Approach to Cost Functions for Automated Optimization of IMRT Treatment Plans

    Full text link
    We present the creation and use of a generalized cost function methodology based on costlets for automated optimization for conformal and intensity modulated radiotherapy treatment plans. In our approach, cost functions are created by combining clinically relevant “costlets”. Each costlet is created by the user, using an “evaluator” of the plan or dose distribution which is incorporated into a function or “modifier” to create an individual costlet. Dose statistics, dose-volume points, biological model results, non-dosimetric parameters, and any other information can be converted into a costlet. A wide variety of different types of costlets can be used concurrently. Individual costlet changes affect not only the results for that structure, but also all the other structures in the plan (e.g., a change in a normal tissue costlet can have large effects on target volume results as well as the normal tissue). Effective cost functions can be created from combinations of dose-based costlets, dose-volume costlets, biological model costlets, and other parameters. Generalized cost functions based on costlets have been demonstrated, and show potential for allowing input of numerous clinical issues into the optimization process, thereby helping to achieve clinically useful optimized plans. In this paper, we describe and illustrate the use of the costlets in an automated planning system developed and used clinically at the University of Michigan Medical Center. We place particular emphasis on the flexibility of the system, and its ability to discover a variety of plans making various trade-offs between clinical goals of the treatment that may be difficult to meet simultaneously.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47484/1/11081_2005_Article_2066.pd

    Balancing control and simplicity: a variable aggregation method in intensity modulated radiation therapy planning

    Get PDF
    It is commonly believed that not all degrees of freedom are needed to produce good solutions for the treatment planning problem in intensity modulated radiotherapy treatment (IMRT). However, typical methods to exploit this fact have either increased the complexity of the optimization problem or were heuristic in nature. In this work we introduce a technique based on adaptively refining variable clusters to successively attain better treatment plans. The approach creates approximate solutions based on smaller models that may get arbitrarily close to the optimal solution. Although the method is illustrated using a specific treatment planning model, the components constituting the variable clustering and the adaptive refinement are independent of the particular optimization problem

    Smooth intensity maps and the Bortfeld-Boyer sequencer

    Get PDF
    It has been empirically verified that smoother intensity maps can be expected to produce shorter sequences when step-and-shoot collimation is the method of choice. This work studies the length of sequences obtained by the sequencing algorithm by Bortfeld and Boyer using a probabilistic approach. The results of this work build a theoretical foundation for the up to now only empirically validated fact that if smoothness of intensity maps is considered during their calculation, the solutions can be expected to be more easily applied

    Inverse radiation therapy planning a multiple objective optimisation approach

    Get PDF
    For some decades radiation therapy has been proved successful in cancer treatment. It is the major task of clinical radiation treatment planning to realise on the one hand a high level dose of radiation in the cancer tissue in order to obtain maximum tumour control. On the other hand it is obvious that it is absolutely necessary to keep in the tissue outside the tumour, particularly in organs at risk, the unavoidable radiation as low as possible. No doubt, these two objectives of treatment planning high level dose in the tumour, low radiation outside the tumour have a basically contradictory nature. Therefore, it is no surprise that inverse mathematical models with dose distribution bounds tend to be infeasible in most cases. Thus, there is need for approximations compromising between overdosing the organs at risk and underdosing the target volume. Differing from the currently used time consuming iterative approach, which measures deviation from an ideal (non-achievable) treatment plan using recursively trial-and-error weights for the organs of interest, we go a new way trying to avoid a priori weight choices and consider the treatment planning problem as a multiple objective linear programming problem: with each organ of interest, target tissue as well as organs at risk, we associate an objective function measuring the maximal deviation from the prescribed doses. We build up a data base of relatively few efficient solutions representing and approximating the variety of Pareto solutions of the multiple objective linear programming problem. This data base can be easily scanned by physicians looking for an adequate treatment plan with the aid of an appropriate online tool

    Modeling profit sharing in combinatorial exchanges by network flows

    Get PDF
    In this paper we study the possibilities of sharing profit in combinatorial procurement auctions and exchanges. Bundles of heterogeneous items are offered by the sellers, and the buyers can then place bundle bids on sets of these items. That way, both sellers and buyers can express synergies between items and avoid the well-known risk of exposure (see, e.g., [3]). The reassignment of items to participants is known as the Winner Determination Problem (WDP). We propose solving the WDP by using a Set Covering formulation, because profits are potentially higher than with the usual Set Partitioning formulation, and subsidies are unnecessary. The achieved benefit is then to be distributed amongst the participants of the auction, a process which is known as profit sharing. The literature on profit sharing provides various desirable criteria. We focus on three main properties we would like to guarantee: Budget balance, meaning that no more money is distributed than profit was generated, individual rationality, which guarantees to each player that participation does not lead to a loss, and the core property, which provides every subcoalition with enough money to keep them from separating. We characterize all profit sharing schemes that satisfy these three conditions by a monetary flow network and state necessary conditions on the solution of the WDP for the existence of such a profit sharing. Finally, we establish a connection to the famous VCG payment scheme [2, 8, 19], and the Shapley Value [17]

    A constraint programming approach for the two-dimensional rectangular packing problem with orthogonal orientations

    Get PDF
    We propose a constraint-based approach for the two-dimensional rectangular packing problem with orthogonal orientations. This problem is to arrange a set of rectangles that can be rotated by 90 degrees into a rectangle of minimal size such that no two rectangles overlap. It arises in the placement of electronic devices during the layout of 2.5D System-in-Package integrated electronic systems. Moffitt et al. [8] solve the packing without orientations with a branch and bound approach and use constraint propagation. We generalize their propagation techniques to allow orientations. Our approach is compared to a mixed-integer program and we provide results that outperform it

    Pareto navigation – systematic multicriteria-based IMRT treatment plan determination

    Get PDF
    Background and purpose Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Material and methods Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms “selection” and “restriction”. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle – a set constructed from precomputed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions
    corecore