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Let a1 , ..., am , c1 , ..., ck be independent random points in Rn that are identically
distributed spherically symmetrical in Rn and let X :=[x # Rn|aT

i x�1, i=1, ..., m]
be the associated random polyhedron for m�n�2. We consider multiple objec-
tive linear programming problems maxx # X cT

1 x, maxx # X cT
2 x, ..., maxx # X cT

k x with
1�k�n. For distributions with algebraically decreasing tail in the unit ball, we
investigate the asymptotic expected number of vertices in the efficient frontier of X
with respect to c1 , ..., ck for fixed n, k and m � �. This expected number of efficient
vertices is the most significant indicator for the average-case complexity of the
multiple objective linear programming problem. � 1998 Academic Press

1. INTRODUCTION AND RESULTS

We consider multiple objective linear programming problems (MOLPs)
with k linear objective functionals

max
x # X

cT
1 x, max

x # X
cT

2 x, ..., max
x # X

cT
k x (1)

with cj , x # Rn subject to m linear constraints

X :=[x # Rn|aT
i x�bi , i=1, ..., m], (2)

where we assume ai # Rn and bi # R for 1�k�n�m. Finally, we assume
[c1 , ..., ck] linearly independent. The polyhedral set X defined by (2) is the
set of feasible solutions for the MOLP (1)�(2). Multiple objective linear
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programming problems are generalizations of linear programming
problems with k=1.

In contrast to the common linear programming problem, MOLPs with
k�2 deal with different objective functionals that have to be maximized
simultaneously. Thus, it would be natural to define optimal solutions of
(1)�(2) in the following way: a point x~ is called optimal for the MOLP
(1)�(2) if for all i=1, ..., k and all x # X holds cT

i x~ �cT
i x. Unfortunately, in

most cases such solutions do not exist as the objective functionals (1)
might be contradictive. So, one has to weaken the assumptions on
optimality in some sense.

The most familiar characterization of ``optimal solutions'' of MOLPs is
due to Pareto: a point x~ # X is called efficient or Pareto-optimal for the
MOLP (1)�(2) if and only if there is no x # X such that cT

i x�cT
i x~ for all

i=1, ..., k and cT
j x>cT

j x~ for some j # [1, ..., k]. Roughly speaking: a solu-
tion x~ # X is efficient if we cannot improve some objective x � cT

j x while we
guarantee at least the actual values of the others.

In general, the efficient solutions of MOLPs will not be uniquely deter-
mined. The set of all efficient solutions for the objectives x � cT

j x,
j=1, ..., k, in X is called efficient frontier of X with respect to [c1 , ..., ck].
The efficient frontier of X with respect to [c1 , ..., ck] is a connected closed
subset of X's boundary.

Figure 1 illustrates the efficient frontier of a polyhedron in R3 with
respect to 2 linearly independent objective functionals on the left and with
respect to 3 linearly independent objective functionals on the right hand
side.

It will be useful for further considerations to have an alternative
characterization of efficiency, which we will introduce for non-degenerate
MOLPs. A multiple objective linear programming problem satisfies the
non-degeneracy condition (NC) if any arrangement of n hyperplanes chosen
from [x|aT

i x=bi], i=1, ..., m, [x|cT
j x=0], j=1, ..., k, has a unique inter-

section point and if any n+1 such hyperplanes have no points in common.

FIG. 1. The efficient frontier of X w.r.t. [c1 , c2] resp. [c1 , c2 , c3].
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In our presentation, we will profit from a parametric description of
efficiency. In case of non-degeneracy a point x~ # X is efficient with respect
to [c1 , ..., ck] if and only if x~ maximizes the parametric objective functional
x � cT

: x with c: :=�k
i=1 : ic i for some positive :=(:1 , ..., :k){0. This can

be shown by an application of Farkas' lemma. For proofs and a more
detailed presentation of the background theory of multiple objective linear
programming we refer to the monographs of Zeleny (1974) and Steuer
(1985).

The complete solution of a MOLP determines the total efficient frontier.
The first and main step of most algorithms for that purpose is to calculate
all efficient vertices and infinite edges. Based on this information it is
possible to determine all efficient faces and hence all efficient points as
convex-combinations of face-generators. The most effective algorithms for
vertex-finding like gift-wrapping, shelling, etc., calculate the efficient
vertices successively.

The analysis of the computational complexity of such an algorithm
requires a detailed analysis of the number of efficient vertices and infinite
edges and the cost for finding the next efficient vertex and for organizing
the search, i.e., data-accounting and administration. In this contribution we
will concentrate only on the analysis of the number of efficient vertices,
which we consider the most important indicator of the computational com-
plexity.

In worst-case situations for any triple (k, n, m) all vertices might be
efficient. This means that MOLPs might be intractable in a worst-case
situation as there might be exponentially many efficient vertices in terms of
n and m even if k is fixed.

The more important question for practitioners is: What number of ver-
tices in the efficient frontier is expected? Empirical evidence and many
statistical experiments suggest that at least for fixed k the average number
of efficient vertices should be polynomially bounded in terms of n and m.

In order to investigate the average number of efficient vertices theoreti-
cally, one has to analyze the expected number of efficient vertices for ran-
domly generated problem instances in a stochastic model that simulates
real world's random as good as possible. The first attempt here is due to
Haimovich (in press), who analyzed the expected number of efficient ver-
tices of X, cf. (2), with respect to the MOLP (1). As a stochastic model for
the generation of random problem instances he used the Flipping Model,
which is characterized by a symmetry assumption and a non-degeneracy
assumption.

Let ai , bi , and ci be distributed jointly in such a way that flipping the
sign (i.e., the orientation) of any inequality aT

i x�bi or any objective cj is
a measure preserving transformation. This symmetry condition is called
sign invariance condition (SIC) in the literature and was used in works of
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Adler and Berenguer (1981), Adler, Karp, and Shamir (1987), Adler and
Meggido (1985), May and Smith (1982), and others for simulating random
polytopes and random linear programs.

In addition, let ai , bi , and cj be distributed in such a way that the non-
degeneracy condition (NC) fulfilled almost surely.

Let v denote the number of efficient vertices of the MOLP (1) with
respect to the constraints (2). Haimovich proved that for distributions
satisfying (SIC) and MOLPs of the form (1)�(2) holds

E(v|X{<)=
\m

n + :
k&1

i=0
\n+k&1

i +
2k&1 :

n

i=0

(
m
i

)& :
k&1

i=0
\m+k&1

i +
. (3)

In order to understand the asymptotic behaviour of E(v) for fixed k and
big m, n it is useful to simplify (3). It holds

E(v|X{<)�(1+o(1)) } min \(n�2)k&1

(k&1)!
,

(m&n)k&1

(k&1)! + (4)

if min(n, m&n)�k � � and even more particularly

E(v|X{<)�(1+o(1)) }
:

k&1

i=0 \
n+k&1

i +
2k&1 (5)

if k, n are fixed and m � �.
The very short and elegant proof of (3) is purely combinatorial and is

given in [10] in generalization of (3) for expectations of the number of
efficient j-faces of X for arbitrary j # [0, ..., n]. The chance for such a short
combinatorial proof is due to the finite number of symmetries of (SIC) and
to the non-parametric stochastic setting.

In particular, (4) shows that the expected number of efficient vertices of
X with respect to [c1 , ..., ck] is polynomial in n and m if k is fixed. Hence,
(4) confirms at first sight completely the empirical suggestion that we men-
tioned above.

But there is one astonishing observation: if n and k are fixed and m is
growing to infinity, the expected number of efficient vertices remains
bounded. This contradicts a bit our feeling, as we know that an additional
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non-redundant constraint will generate new vertices, which might be
efficient as well. So, at least a significant number of additional constraints
should cause a growth of the expected number of efficient vertices.

What might be the reason why the bound of the expectation does not
grow when we add a number of constraints? The only possible explanation
could be that for large m and fixed n there are only a few non-redundant
constraints that contribute to the number of (efficient) vertices. Thus, a
large number of harmless problems with few vertices seems to compensate
a small number of hard problems in expectation. It is not hard to prove
and to quantify this, which was done by Borgwardt (1987): the expected
number of non-redundant constraints tends to 2n for fixed n and m � �.
Qualitatively, this means for large m and fixed n that the average rate of
redundancy is nearly 100 percent. Thus, it is no surprise that the expecta-
tion of efficient vertices does not significantly exceed (n�2)k&1�(k&1)! for
large m.

So, as it is on the other hand a known fact that in many large practical
problems few constraints are redundant, one should look for another
stochastic model that covers distributions with a small redundancy rate for
large problems and fixed dimension.

A completely different way of generating random polyhedra is the point-
based and parameter dependent Rotation Symmetry Model, which is well
known from stochastic geometry, cf. Re� nyi and Sulanke (1963), and
which was introduced by Borgwardt in optimization theory within his
probabilistic analysis of the simplex algorithm, cf. Borgwardt (1980, 1982a,
1982b, 1987, 1996).

We concentrate on a subclass of MOLPs given by

max
x # X

cT
1 x, max

x # X
cT

2 x, ..., max
x # X

cT
k x (6)

with cj , x # Rn subject to the constraints

X :=[x # Rn|aT
i x�1, i=1, ..., m] (7)

with ai # Rn and 1�k�n�m. This is a subclass of the MOLPs defined by
(1)�(2), as we restrict ourselves essentially to positive bi 's at the right hand
side of the constraints. Without loss of generality we take ones at the right
hand side of the constraints dividing by bi .

In particular, this restriction means that 0 is always an interior point
of X. It is the special flavour of this class of MOLPs that there is a single
central point��here the origin��which always belongs to X's interior.
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In the Rotation Symmetry Model, the particular role of the central point
is emphasized by taking spherically symmetric distributions for the genera-
tion of the vectors ai defining the constraints, cf. (7).

Let a # Rn be given in polar representation a=&a&2 | with an
appropriate vector | of unit length. a is spherically symmetrically dis-
tributed, if | is uniformly distributed on the unit sphere Sn&1 in Rn and
if the radius &a&2 of a is distributed with an arbitrary radial distribution
function F, i.e., F(t)=Pr(&a&2�t) for t # R+

0 . Without loss of generality we
may assume that F is continuous from the right. If the vectors
ai , i=1, ..., m, and cj , j=1, ..., k, are independent and identically dis-
tributed spherically symmetric in Rn, they satisfy the rotation invariance
condition (RIC). In addition, we propose F(0)=0, which warrants that the
non-degeneracy condition (NC) is fulfilled with probability one. The radial
distribution function F can be considered as the parameter of this
stochastic model.

So, the Rotation Symmetry Model��like the Flipping Model��is given
by a symmetry assumption��spherical symmetry of the distribution of the
ai and cj ��and a non-degeneracy assumption��no mass of the distribution
in the origin.

Note. In the light of the discussion following Haimovich's result (4)
��that there exist particular distributions in the Rotation Symmetry
Model, namely those that are concentrated on a unique sphere��whose
redundancy rate is zero for all combinations of n and m if the points
ai # Rn, i=1, ..., m are pairwise different. This is due to the fact that a
constraint aT

i x�1 is redundant if and only if ai can be represented as a
convex combination of the points aj , j=1, ..., m, j{i, and 0.

In this work, we will focus on distributions in the unit ball that have an
algebraically decreasing tail F� :=1&F, i.e., there exist positive reals # and
N such that for t � 0+ holds

F� (1&t)=Nt# } (1+o(1)). (8)

We will prove for the number v of efficient vertices:

Theorem 1. For distributions in the unit ball satisfying the (RIC) that
have, in addition, an algebraically decreasing tail with #>0 holds:

K
�

#(n, k) m(k&1)�(n&1+2#)(1+o(1))

�E(v)�K� #(n, k) m(k&1)�(n&1+2#)(1+o(1)) (9)
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for m � � and fixed n, k, where K
�

#(n, k)=(k�( n
k&1)) K� #(n, k) and

K� #(n, k)=\- ?
2 +

k&1

}
1

k!1((k+1)�2)
} n2(k&1) } (1+o(1)), (10)

for n � � and fixed k.

Thus, we observe that the expectation of E(v) grows sublinearly in m
reflecting the above stated feeling that a growing number of constraints
must influence the growth of E(v). The uniform distribution in the unit ball
satisfies the assumptions of Theorem 1 with #=1 and N=n. A correspond-
ing result for the uniform distribution on the unit sphere can be gained as
a limiting case of Theorem 1 if we consider, e.g., the sequence F# with
F� #(1&t)=t# for # � 0.

We remark that the result of Theorem 1 is in some sense a generalization
of Borgwardt's asymptotic results in the analysis of the average complexity
of the simplex method in Borgwardt (1980, 1982a). The relation to
Borgwardt's work will be precisely stated in Section 2.

The rest of the work is organized as follows: Section 2 shows that we can
embed the question for the average number of efficient vertices of a MOLP
into stochastic geometry of polytopes. Section 3 gives a detailed proof of
Theorem 1.

2. FROM OPTIMIZATION TO STOCHASTIC GEOMETRY

The heart of our analysis of the average number of efficient vertices of
multiple objective linear programming problems (MOLPs) of type (6)�(7)
is the close interaction between combinatorial structures from optimization
theory��in particular the number of efficient vertices of the polyhedron X
of feasible solutions with respect to k objectives x � cT

1 x, ..., x � cT
k x��and

geometrical figures of the set of feasible solutions.
It will be the role of this section to build a bridge between complexity

theory of multiple objective programming and stochastic geometry.
In the first paragraph of this section we will show that the number of

efficient vertices of X w.r.t. [c1 , ..., ck] equals the number of facets of X's
polar polytope Y that are intersected by C :=cone([c1 , ..., ck]). For fixed
Y the expected number of Y-facets that are intersected by a random C can
be estimated in terms of the expected numbers of Y-facets that are inter-
sected by random linear subspaces of dimensions l=1, ..., k as will be
shown in the second subsection. We will see in the third subsection that the
expected number of Y-facets intersected by a random linear subspace can
be estimated by the expectation of a weighted sum of spherical angles
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generated by certain faces of Y and henceforth we will have arrived in the
world of stochastic geometry.

2.1. Polarization��A Link to Polytope Functionals

Multiple objective linear programming problems (MOLPs) of type
(6)�(7) can be described by two matrices A and C, the first of which is

A :=(a1 | } } } |am), (11)

containing the normal vectors of the constraints as columns, while the
latter

C :=(c1 | } } } |ck) (12)

contains the data of the objective functionals as column vectors. In
the following we will identify the set of feasible solutions X=
[x # Rn|ATx�1], 1=(1, ..., 1)T # Rm, with X(A) and the number v of
efficient vertices of X=X(A) with respect to (w.r.t.) the columns of C with
v(C, A).

As we announced in Section 1 we are to analyze the expectation of
v(C, A) for random A and C satisfying the (RIC) condition. An Rn_l

matrix is called non-degenerate if any choice of n different columns of it is
linearly independent and if any choice of n+1 different columns of it is in
the general position. Throughout this section we will assume that the
matrix (A|C) is non-degenerate, which means in particular that random
MOLPs of type (6)�(7) satisfy the (NC) condition with probability one.
Aside from the number of efficient vertices we will study the number of ver-
tices in the contour of X w.r.t. C=(c1 | } } } |ck). By definition, the contour of
X w.r.t. C consists of all x~ # X that maximize or minimize some objective
functional x � cT

j x for some j # [1, ..., k] over X while all others take fixed
values. Under the assumption of non-degeneracy, in a parametric language,
a vertex x~ # X lies in the contour of X w.r.t. C if and only if it maximizes
some objective functional x � cT

: x, where c: :=�k
i=1 :i ci , : :=(:1 , ..., :k)

{0, is some non-zero linear combination of the column vectors of C. So,
like the efficient frontier the contour is a connected and closed subset of X's
boundary. Figure 2 shows the efficient frontier and the contour of a
polytope X/R3 for two objective functionals.

We denote the number of vertices of X that lie in the contour of X w.r.t.
C with V=V(C, A).

It will be one major trick in our analysis to estimate the expectation E(v)
by E(V), cf. Theorem 2.
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FIG. 2. The efficient frontier and the contour of X w.r.t. C.

The vertices in the contour and in the efficient frontier can be charac-
terized geometrically. For this purpose let

C :=cone([c1 , ..., ck])=cone(C) (13)

be the k-dimensional convex cone generated by C and

L :=span([c1 , ..., ck])=span(C) (14)

be the k-dimensional linear subspace generated by C.
Note that we use the set-functionals conv, cone, aff and span as matrix-

functionals as well. If the argument of the functionals is a matrix, the func-
tionals are understood as functionals of the set of column vectors of this
matrix.

Moreover, let x~ be an arbitrary vertex of X and J(x~ )/[1, ..., m] be the
set of indices j of those constraints aT

j x�1 that are active in x~ . Then,

VC(x~ ) :=cone([aj | j # J(x~ )]), (15)

is called polar vertex cone of x~ . It is well known that the following is true:

Lemma 1. Let (A|C) be non-degenerate:

(i) A vertex x~ of X is efficient w.r.t. C if and only if the polar vertex
cone of x~ is intersected by C.

(ii) A vertex x~ of X lies in the contour w.r.t. C if and only if the polar
vertex cone of x~ is intersected by L.

Proof. We prove both items side by side writing the figures of item (ii)
in brackets.

Necessity. If the vertex x~ of X is efficient w.r.t. C (resp. lies in the contour
of X w.r.t. C), it maximizes some non-zero parametric objective functional
x � cT

: x with c: # C (resp. c: # L). This means c: must lie in the polar
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vertex cone of x~ , as otherwise there exists a feasible direction along
which x � cT

: x increases starting from x~ contradicting the optimality of the
vertex x~ .

Sufficiency. If the polar vertex cone VC(x~ ) of a vertex x~ # X is intersected
by C (resp. L), there exists at least one ray c # C & VC(x~ ) (c # L & VC(x~ )),
which is a non-zero positive combination of c1 , ..., ck (resp. a non-zero
linear combination of c1 , ..., ck). Hence, the functional x � cTx is maxi-
mized by x~ and henceforth x~ lies in the efficient frontier of X w.r.t. C (resp.
lies in the contour of X w.r.t. C). K

We learn from Lemma 1 that we can characterize efficiency (resp. mem-
bership in the contour) of a vertex x~ of X w.r.t. C by intersections of C
(resp. L) with the polar vertex cone of x~ . Hence, it will be useful to con-
sider A � v(C, A) and A � V(C, A) for fixed C as functionals of the
polar polyhedron Y=Y(A) of X(A), which is defined by

Y :=X p :=[ y # Rn|xTy�1, x # X]. (16)

It is not hard to see that in our particular framework, Y is a polytope given
by

Y=conv([0, a1 , ..., am]), (17)

which is due to the restricted right hand sides of the constraints (7), cf.
Borgwardt (1987, Lemma 1.5).

It is well known that for non-degenerate A the face lattices of X from
(7) and Y from (16) are anti-isomorphic, cf. Stoer and Witzgall (1970,
Chap. 1). That means, in particular, there is a one-to-one correspondence
between the vertices of X and the facets of Y.

Moreover, by the assumption of non-degeneracy, the polyhedron X is
simple, i.e., each j-face of X is a subset of exactly n& j restrictive hyper-
planes for j=0, ..., n&1. In terms of Y, this means Y is simplicial, i.e., each
j-face of Y is a simplex of dimension j.

It will be probably the most powerful structural tool in our analysis to
exploit the one-to-one correspondences between the vertices in the efficient
frontier (resp. in the contour) of X w.r.t C and the facets of Y that are
intersected by C (resp. L).

For non-degenerate A we introduce the set Im, n of all n-tuples (i1 , ..., in)
of indices ij # [1, ..., m] with 1�i1<i2< } } } in�m and associate to each
tuple I # Im, n the point xI , which is defined as the unique intersection point
of the hyperplanes [x|aT

ij x=1], j=1, ..., n, i.e., xI is the basic solution
w.r.t. I. Furthermore, for I=(i1 , ..., in) # Im, n let

YI :=conv(AI) with AI :=(ai1
| } } } |a in). (18)
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It is not hard to see and well known that xI is a vertex of X if and only
if YI is a facet of Y, cf. Borgwardt (1987, p. 69). This is a precise formula-
tion of the above stated one-to-one correspondence of X-vertices and
Y-facets. From Lemma 1 we deduce the following:

Corollary 2. For non-degenerate (A|C) and I # Im, n holds:

(i) xI is an efficient vertex of X w.r.t. C if and only if YI is a facet
of Y that is intersected by C.

(ii) xI is a vertex in the contour of X w.r.t. C if and only if YI is a facet
of Y that is intersected by L.

Proof. If xI is a vertex of X, VC(xI)=cone(YI) for non-degenerated A,
i.e., the cone generated by YI is identical with the polar vertex cone of xI ,
cf. (15). Hence, the claims (i) and (ii) follow from the corresponding items
in Lemma 1. K

Items (i) and (ii) characterize efficiency and resp. membership in the con-
tour of a vertex x~ of X in terms of the polar polyhedron Y. For the latter
case there is another interesting geometric characterization in terms of the
primal polyhedron X: we call a vertex x~ of X a shadow-vertex with respect
to L, if the orthogonal projection of the vertex x~ onto L is a vertex of the
orthogonal projection of X onto L. In this notation, x~ lies in the contour
of X with respect to C if and only if x~ is a shadow-vertex of X w.r.t. L.

The concept of shadow-vertices was introduced by Borgwardt (1980,
1982a, 1982b, 1987, 1996) in his famous average-case analysis of a
parametric variant of the simplex algorithm solving linear prom gramming
problems on a polyhedron X of type (7). The main step of the analysis was
the investigation of the second phase of the simplex algorithm; i.e., starting
with some vertex of X improve the objective functional until an optimal
vertex is reached. Borgwardt proved that the expected number of pivot
steps required to maximize the objective functional is just a fourth of the
expected number of shadow-vertices of X with respect to a random plane,
i.e., a two-dimensional linear subspace.

In the context of multiple objective linear programming we need to
analyze shadow-vertices of X with respect to subspaces L of arbitrary
dimension. So, in this sense our approach to the average-case complexity
analysis of MOLPs can be considered as a generalization of Borgwardt's
work on the average-case complexity analysis of the simplex algorithm.
Figure 1 illustrates this generalization showing efficient frontiers for two
and three objective functional. Figures 1 and 2��in particular the shape of
the polytope and the examples with two objectives��are taken from
Borgwardt (1987).

Corollary 2 gives that in case of non-degenerate (A|C) there is a one-
to-one correspondence between the vertices of X in the efficient frontier
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(resp. in the contour) w.r.t. C and the facets of Y that are intersected by C
(resp. L).

Thus, as an immediate consequence we obtain sum representations of the
functionals A � v(C, A) and A � V(C, A) for fixed C if (A|C) is non-
degenerate. Let / denote an indicator functional of a Boolean argument,
which equals one if the Boolean argument is true and zero otherwise. Then,
it holds

v(C, A)= :

YI facet of Y(A)
I # Im, n

/(YI & C{<) (19)

and

V(C, A)= :

YI facet of Y(A)
I # Im, n

/(YI & L{<) (20)

Formulae (19) and (20) show that the functionals A � v(C, A) and
A � V(C, A) can be represented as polytope functionals of Y that can be
reduced via a sum of ``facet-functionals'' for any fixed C. In former publi-
cations (Ku� fer, 1992, 1994) we analyzed such facet-additive polytope func-
tionals systematically. Reduced to our needs we fix this structural property
in the following way:

Definition 1. For m�n�1 let 8: A � R, A # Rn_m, be a real func-
tional that is invariant under column permutations of A. If there exists a
functional ,: B � R, B # Rn_n, that is invariant under column permuta-
tions of B such that for non-degenerate A holds

8(A)= :

YI facet of Y(A)
I # Im, n

,(AI), (21)

the functional 8 is called a facet-additive polytope functional of Y with
facet-functional ,.

For our particularly interesting examples v(C, A), cf. (19), and
V(C, A), cf. (20), the facet-functionals B � /(conv(B) & C{<) and
B � /(conv(B) & L{<) are Boolean functionals of B deciding whether
conv(B) does intersect C resp. L or not.

Unfortunately, the functionals (19) and (20) are not covered by Defini-
tion 1 yet, as the assumption that A is non-degenerate does not necessarily
mean that (A|C) is non-degenerate as well. We handle this problem by
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averaging on the choice of C and we define the average number of vertices
in the efficient frontier w.r.t. a random C by

v� k(A) :=EC(v(C, A)). (22)

Analogously, we define the average number of vertices in the contour w.r.t.
a random C by

V� k(A) :=EC(V(C, A)). (23)

The subscript C at the expectation symbols in (22) and (23) simply
indicates that we average on the choice of C. In terms of the polar
polyhedron, v� k(A) is the average number of Y-facets that are intersected
by a randomly chosen k-dimensional convex cone C and V� k(A) is the
average number of Y-facets that are intersected by a random k-dimensional
linear subspace L. In terms of the primal polyhedron X=X(A), V� k(A) is
the average number of shadow-vertices w.r.t. to the random k-dimensional
subspace L.

The functionals A � v� k(A) and A � V� k(A) are facet-additive polytope
functionals of Y=conv([0, a1 , ..., am]) in the sense of Definition 1. It holds

v� k(A)= :

YI facet of Y(A)
I # Im, n

PrC(conv(AI) & C{<), (24)

i.e., v� k is a facet-additive functional with facet-functional
B � PrC(conv(B) & C{<), and the functional

V� k(A)= :

YI facet of Y(A)
I # Im, n

,k(AI),
(25)

,k(B) :=PrC(conv(B) & L{<),

is facet-additive with facet-functional ,k .

2.2. The Relation between the Number of Vertices in the Efficient Frontier
and in the Contour

It seems plausible that there is some combinatorial relation between
v� k(A) and V� k(A), as we can dissect the subspace L into 2k convex cones
of type cone([s1c1 , ..., skck]) with si # [&1, 1]. Hence, the first guess is
that V� k(A) should be something like 2kv� k(A). But it turns out that this
rash conclusion is false as the convex cones cone([s1c1 , ..., sk ck]) have
overlapping boundaries. So, certain facets of Y are intersected by two or
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more cones. Hence, at least V� k(A)�2kv� k(A) holds. But as we are
particularly interested in upper bounds of the expectation of v� k(A), we are
looking for estimates from the other side.

Theorem 2. For non-degenerate A holds

2&kV� k(A)�v� k(A)� :
k

l=1

2&l \k
l+ V� l(A). (26)

Proof. As the left hand side is trivial we concentrate on proving
the right. Let c1 , ..., ck be linearly independent in Rn. We define for
non-degenerate matrices A # Rn_m and (closed) convex cones
C$=cone([ci1 , ..., cil]), 1�i1< } } } <il�k, l=1, ..., k,

v0(C$, A) := :

YI facet of Y(A)
I # Im, n

/(C$ & YI {<) /(� C$ & YI {<) (27)

with YI as in (18), v0(C$, A) is the number of Y-facets that are intersected
by C$ but not by �C$, i.e., the number of Y-facets that are intersected
exclusively by the relative interior of C$ and not by its relative boundary.
The relative topology of the closed convex cone C$/Rn consists of the
intersections of the open sets of the canonical topology in Rn with the affine
hull of C$.

For non-degenerate A and C$=cone([ci1 , ..., cil]) let

v� 0
l(A) :=EC(v0(C$, A)), (28)

where the average is taken on the choice of the column vectors c1 , ..., ck of
C. The right hand side is obviously independent from the choice of the
cij as these vectors are identically distributed. v� 0

l(A) denotes the average
number of Y-facets that are intersected by the relative interior of the
l-dimensional cone C$ but not by the relative boundary of C$.

First, we are going to overestimate v� l(A) in terms of v� 0
l(A), l=1, ..., k.

From the definition of v(C, A) and v0(C$, A) we are going to conclude
that

v(C, A)� :
k

l=1

:
1�i1< } } } <il�k

v0(cone([c i1 , ..., c il]), A). (29)

In order to prove (29) we observe that C can be represented as a union of
disjoint relatively open cones

C= .
k

l=1

.
1�i1< } } } <il�k

int(cone([ci1 , ..., cil])) _ [0]. (30)
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First of all, we remark that the zero-dimensional cone [0] does not
matter as YI cannot contain the origin if A is non-degenerate. For a
given A we associate each cone cone([ci1 , ..., cil]) with the number
v0(cone([ci1 , ..., cil]), A) of facets of Y=conv(A) that are intersected by the
cone under consideration but not by its relative boundary. If a Y-facet YI

is intersected by C there must be at least one subcone cone([ci1
, ..., cil])

intersecting YI with minimum number of generators cij . The intersected
facet YI will be counted by v0(cone([ci1 , ..., cil]), A). To prove this we have
to check that YI does not intersect the relative boundary of cone([ci1 , ..., cil]).
If we assume the opposite there will be a subcone of cone([ci1 , ..., cil]) that
will intersect YI as well, contradicting the choice of our subcone. Hence,
every Y-facet that intersects C is at least counted by one summand of the
right hand side in (29) and (29) is proven. Unfortunately, we cannot avoid
counting some facets of Y by different summands in (29). Hence, there are
situations where < holds in (29). Taking expectations on both sides of
(29) we obtain

v� k(A)� :
k

l=1 \
k
l+ v� 0

l (A). (31)

Next, we will estimate the number of Y-facets that are intersected by an
l-dimensional linear subspace from below. Let C(l) :=(c1 | } } } |cl) and
L(l) :=span(C(l)) be the corresponding l-dimensional linear subspace. We
will prove that

V(C(l), A)� :
s1, ..., sl # [&1, 1]

v0(cone([s1 c1 , ..., slcl]), A). (32)

It is obviously clear that

L(l)
# ,

s1, ..., sl # [&1, 1]

int(cone([s1c1 , ..., sl cl])). (33)

But, in order to complete the proof of (32) we have to show that no YI

is covered by two different summands on the right of (32): Suppose there
are different cones C$=cone([s$1c1 , ..., s$lcl]) and C"=cone([s"1c1 , ..., s"lcl]),
a Y-facet YI and two points y$ # int(C$) & YI and y" # int(C") & YI . Then,
conv([ y$, y"])/YI as YI is convex. On the other hand, we know that
� C$ & YI {< and � C" & YI {<. Hence, by definition (27), YI is neither
counted by v0(C$, A) nor by v0(C", A) and (32) is established.

If we average both sides of (32) on the choice of C we get

V� l(A)�2lv� 0
l(A) (34)
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as the ci are identically distributed spherically symmetric in Rn. We insert
(34) into (31) and obtain the desired estimate (26). K

2.3. A Sum of Spherical Angles
As we learned in (25) the polytope functional V� k is a facet-additive func-

tional of Y with facet-functional ,k : B � PrC(conv(B) & L{<). We now
want to estimate this facet-functional by geometric figures��more precisely
we will estimate it by a weighted sum of spherical angles spanned by sub-
matrices of B=(b1 | } } } |bn) that consist of n&k+1 columns. Therefore, we
need some preliminary notation. We look at the face lattice of the (n&1)-
simplex

S :=conv(B), B=(b1 | } } } |bn), (35)

for regular B. For any permutation ?=(?(1), ..., ?(n)) of the integers
1, ..., n let

S ( j)
? :=conv([b?(1) , ..., b?( j)]) (36)

be the convex hull of the columns of B that correspond to the head
(?(1), ..., ?( j)) of the permutation ? for j=1, ..., n. Then, for regular B, S ( j)

?

is a ( j&1)-simplex and a face of S with dimension j&1 for all ? # 6n , 6n

being the symmetric group of all n-permutations.
The mapping

? � (S (n)
? , S (n&1)

? , ..., S (1)
? , <) (37)

is one-to-one between 6n and the set of top-down paths in the face lattice
of S going down dimension by dimension from S=S (n)

? to the empty set,
cf. Fig. 3 for an illustration in R3.

As there are exactly ( n
j ) different faces of S with dimension j&1 every

S ( j)
? is met by exactly n!�( n

j ) paths in the face lattice, cf. Fig. 3.
Now, we return to the facet-functional ,k : B � PrC(conv(B) & L{<)=

PrC(S & L{<), which we want to estimate. For matrices B and C with
non-degenerate (B|C), geometric insight delivers that if S is intersected by
L, it is intersected in at least k faces with dimension n&k. This is due
to the observation that for non-degenerate (B|C) the intersection of the
k-dimensional subspace L with the (n&1)-dimensional simplex S is a
(k&1)-polytope, whose vertices lie on different (n&k)-faces of S. On the
other hand it is trivial that L cannot intersect more than all ( n

k&1) different
(n&k)-faces of S. Thus, observing the combinatorics of the face lattice
established above, we have proven the following lower and upper bounds
for the facet-functional ,k : B � PrC(S & L{<) with S=conv(B):
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FIG. 3. The face lattice of S.

Lemma 2. For regular B # Rn_n let

.k(B) :=
1
k
\ n

k&1+
n!

:
? # 6n

PrC(S (n&k+1)
? & L{<), (38)

where S=conv(B) and S ( j)
? as in (36). Then, it holds

k

\ n
k&1+

.k(B)�,k(B)�.k(B). (39)

We are aware that (39) is a rough worst-case estimate. It would be inter-
esting to find out for random B, which bound��the upper or the lower��is
more likely.

In the rest of the work we will concentrate on the evaluation of the facet-
additive polytope functional 8k defined by

8k(A) := :

YI facet of Y(A)
I # Im, n

.k(AI) (40)

with facet-functional .k given in (38).
In order to do that, we are going to express the probability

PrC(S (n&k+1)
? & L{<) by a spherical angle, which is defined as follows.
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Let U be an arbitrary j-dimensional subset of Rn with 0 � int(aff(U)). Then,
the j-dimensional spherical angle of U is defined by

Wj (U) :=
*j (cone(U) & Sn&1)

*j (S j)
, (41)

where *j denotes the j-dimensional Lebesgue-measure. Thus, the spherical
angle of U is the Lebesgue-measure of the j-dimensional spherical projec-
tion of conv(U) onto Sn&1 divided by the Lebesgue-measure of S j and is
henceforth a number in [0,1].

For ease of notation we will abbreviate the j-dimensional Lebesgue-
measure of the j-dimensional sphere with

+j+1 :=*j (S
j)=2

?( j+1)�2

1(( j+1)�2)
(42)

for j # N0 in the following.

Lemma 3. For regular B # Rn_n holds

PrC(S (n&k+1) & L{<)=2Wn&k(S (n&k+1)) (43)

with S ( j)=S ( j)
Id as in (36).

Proof. As the columns ci of C are spherically symmetrically distributed,
we may assume without loss of generality that

b (n&k+2)
i =b (n&k+3)

i = } } } =b (n)
i =0 (44)

for i=1, ..., n. We dissect L into two halfspaces L+ and L&, where we call

L+ :=cone(c1 , &c1 , ..., ck&1 , &ck&1 , ck) (45)

the upper halfspace and

L& :=cone(c1 , &c1 , ..., ck&1 , &ck&1 , &ck) (46)

the lower halfspace of L. For non-degenerate (B|C) the sets

L+ & Sn&1 & [x # Rn|x(l)=0, l=n&k+2, ..., n] (47)

and

L& & Sn&1 & [x # Rn|x(l)=0, l=n&k+2, ..., n] (48)
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consist of exactly one point l+ resp. l&, each of which is uniformly
distributed on

Sn&k :=Sn&1 & [x # Rn|x(l)=0, l=n&k+2, ..., n] (49)

if the c1 , ..., ck are uniformly distributed on Sn&1. Thus, the functionals

M � ++(M) :=PrC(l+ # M) and M � +&(M) :=PrC(l& & M), (50)

which are defined for Lebesgue-measurable M/Sn&k are spherically
symmetric Haar-measures. Haar-measures that are invariant under the
orthogonal group of transformations are uniquely determined up to a
constant factor, cf. Nachbin (1965). Thus, as ++ and +& are probability
measures, they are uniquely determined. It holds

++(M)=+&(M)=
*n&k(M)
+n&k+1

. (51)

For regular B it turns out that

PrC(S (n&k+1) & L+ & L&{<)=0, (52)

which yields

PrC(S (n&k+1) & L{<)

=PrC(S (n&k+1) & L+{<)+PrC(S (n&k+1) & L&{<)

=PrC(l+ # M$)+PrC(l& # M$)

=++(M$)++&(M$)

=2Wn&k(M$) (53)

with M$ :=cone(S (n&k+1))&Sn&1/Sn&k completing the proof of (43). K

Statement and proof of Lemma 3 are straightforward generalizations of
Borgwardt's corresponding result for k=2 given in Borgwardt (1987,
pp. 126�129).

Now, the average number of vertices V� k(A) in the contour of X with
respect to C has been reduced to the calculation of spherical angles. We
summarize our results in the following corollary:
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Corollary 3. For non-degenerate A holds

k

\ n
k&1+

8k(A)�V� k(A)�8k(A) (54)

with

8k(A)= :

YI facet of Y(A)
I # Im, n

.k(AI),

.k(B)=
2
k
\ n

k&1+
n!

:
? # 6n

Wn&k(S (n&k+1)
? ), (55)

for S=conv(B) and S ( j)
? as in (36).

2.4. Rectangular Simplices and Standard-Reduction

Suppose we are given the facet-additive polytope functional 8k with
facet-functional .k from Corollary 3. We will show in this subsection that
we can reduce .k in a sum of functionals of ``rectangular simplices''��
special simplicial pyramids pointed at the origin.

This further reduction will allow a simplified evaluation of expectations.

Definition 2. Let B :=(b1 | } } } |bn) # Rn_n be a regular matrix. We call
the n-simplex conv([0, b1 , ..., bn]) rectangular simplex or r-simplex if there
exists a permutation ? # 6n such that the differences d (i)

? :=b?(i)&b?(i+1) ,
i=1, ..., n&1, d (n)

? :=b?(n) are non-zero and pairwise orthogonal.

First, we are going to construct rectangular simplices associated to
the regular matrix B=(b1 | } } } |bn) # Rn_n for all permutations ? in the
group 6n of n-permutations. Let S :=conv(B)=conv([b1 , ..., bn]) be the
(n&1)-simplex associated to B. Furthermore, we recall the one-to-one
correspondence (39) between 6n and the top-down paths in the face lattice
of S. We associate to every path

(S (n)
? , S (n&1)

? , ..., S (1)
? , <) (56)

with S ( j)
? :=conv([b?(1) , ..., b?( j)]) a decreasing chain of affine subspaces

E (n)
? #E (n&1)

? # } } } #E (1)
? (57)
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by the affine hulls

E ( j)
? :=aff(S ( j)

? ) (58)

for j=1, ..., n. E ( j)
? is the ( j&1)-dimensional affine subspace that supports

S ( j)
? . Moreover, we equip every affine subspace E ( j)

? with a (relative) origin
O( j)

? by the following recursive construction:

O (n)
? =projE?

(n)(0),

O( j)
? =projE?

(j)(O ( j+1)
? ), j=n&1, ..., 1. (59)

Here, projE denotes the ortho-projector onto E. The set of relative origins
corresponding to ? is denoted by

O? :=[O (1)
? , O (2)

? , ..., O (n)
? ]. (60)

The Euclidian distances between consecutive relative origins will be
denoted by

h ( j)
? :=&O ( j)

? &O ( j+1)
? &2 (61)

for j :=1, ..., n&1 and with

h (n)
? :=&O (n)

? &2 . (62)

We introduce the vector of distances corresponding to ? by

h? :=(h (1)
? , ..., h (n)

? ). (63)

Definition 3. Let B=(b1 | } } } |bn) # Rn_n, ? # 6n , and O? as in (60). If
O? is linearly independent, the simplex

R? :=conv([0] _ O?)=conv([O(1)
? , ..., O (n)

? , 0]) (64)

is called the r-simplex associated to B with respect to ?.

Figure 4 shows the r-simplex associated to B=(b1 |b2 |b3) # R3 with
respect to the permutation ?=(2, 3, 1).

The assumption that the matrix B is regular does not guarantee that O?

is linearly independent for all ? # 6n .

Definition 4. The matrix B=(b1 | } } } |bn) # Rn_n is called strongly
regular or strongly non-singular if O? is linearly independent for all ? # 6n .
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FIG. 4. The rectangular simplex associated to B=(b1 |b2 |b3) w.r.t. ?=(2, 3, 1).

Clearly, strong regularity implies regularity. The converse is not
generally true bus it is not hard to prove that the following holds:

Remark. In the Rotation Symmetry Model a random (n_n)-matrix is
strongly non-degenerate with probability one.

Henceforth, we may assume without loss of generality that B is strongly
regular. The following characterizations of strong regularity are immediate
from Definitions 3 and 4:

Remark. The following items are equivalent for B # Rn_n:

(i) B is strongly regular.

(ii) h? is strictly positive for all ? # 6n .

(iii) For all ? # 6n there exists an r-simplex with respect to ?.

Next, we are going to introduce a sign-functional

sig_ : (B, ?) � sig_(B, ?) (65)

for matrices B=(b1 | } } } |bn) # Rn_n and permutations ? # 6n which is
controlled by a fixed signature

_=(_(1), ..., _ (n&1))T # [&1, 1]n&1. (66)

For polytopes Z$, Z"/Rn and arbitrary O # Rn we define

/1(Z$, Z", O) :={1
0

if Z" is a facet of Z$ and of conv([O] _ Z$)
else

(67)
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and

/2(Z$, Z", O) :={1
0

if Z" is a facet of Z$ but not of conv([O] _ Z$)
else

(68)

If /i (Z$, Z", O)=1 we call Z" a Z$-facet of the ith kind for i=1, 2 with
respect to O. Furthermore, the jth sign of the matrix B under the permuta-
tion ? with respect to the signature _ is given by

sig ( j)
_ (B, ?) :=[/1&_( j)/2](S ( j+1)

? , S ( j)
? , O ( j+1)

? ) (69)

for j=n&1, n&2, ..., 1. Finally, the sign of the matrix B under the permuta-
tion ? with respect to the signature _ is defined by

sig_(B, ?) := `
n&1

j=1

sig ( j)
_ (B, ?). (70)

Now, we are ready to state the central definition of this subsection:

Definition 5.

(i) The functional ,: B � R for B=(b1 | } } } |bn) is called standard-
reducible if there exists a signature _ # [&1, 1]n&1 and a functional
�: Rn � R such that for all strongly regular B holds

,(B)= :
? # 6n

sig_(B, ?) �(h?) (71)

with h? as in (63). � is called the r-simplex-functional of ,.

(ii) A facet-additive polytope functional 8 is called standard-
reducible if the associated facet-functional , is standard-reducible.

Roughly speaking, a functional , is standard-reducible if it can be repre-
sented as a certain signed sum of functionals of the vectors of distances
associated to the r-simplices.

In this work, we focus on the facet-additive functionals 8k , cf.
Corollary 3, whose facet-functionals .k are given by

.k(B)=
2
k
\ n

k&1+
n!

:
? # 6n

Wn&k(S (n&k+1)
? ). (72)
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We will prove in the next theorem that .k is standard-reducible for all
k # [1, ..., n]. Before we can state the result, we need two more symbols.
For j=1, ..., n let

rj (h) :=((h( j))2+(h( j+1))2+ } } } +(h(n))2)1�2 (73)

be the norms of the tails of the vector h. Finally, for l=1, ..., n let

7(l)(h) :=conv \{\
0
b
b
0+ , \

0
b
0

h (l&1)+ , ..., \
h(1)

b
b

h(l&1)+=+ . (74)

7(l)(h) represents the (l&1)-simplex conv([O (1)
Id , ..., O (l)

Id ]) written in
coordinates of E (l)=E (l)

Id =aff([O (1)
Id , ..., O (l)

Id ]).

Theorem 3. For k # [1, ..., n], the facet functional .k from (72) is
standard-reducible with the signature _k # [&1, 1]n&1 given by

_ ( j)
k ={&1

1
if n&k+1� j�n&1
if 1� j�n&k

(75)

and the r-simplex-functional �k : Rn � R+
0 defined by

�k(h) :=
2
k!

1
+n&k+1

|
7(n&k+1)(h)

rn&k+1(h)
(&z&2

2+r2
n&k+1(h)) (n&k+1)�2 dz. (76)

Proof. We have to prove that the functional .k ,

.k(B)=
2
k
\ n

k&1+
n!

:
? # 6n

Wn&k(S (n&k+1)
? ), (77)

with S ( j)
? as in (36) is standard-reducible. The proof is divided into three

stages:

Stage 1. For j=0, ..., n let

6n, j :=[?~ # 6n | ?~ (i)=i, i= j+1, ..., n]. (78)

356 K.-H. KU� FER



File: DISTL2 048025 . By:XX . Date:07:09:98 . Time:14:19 LOP8M. V8.B. Page 01:01
Codes: 2677 Signs: 1442 . Length: 45 pic 0 pts, 190 mm

We will show that

Wn&k(S (n&k+1)
? )

= :
{ # 6n, n&k+1

sig_k(B, { b ?) Wn&k(conv([O (1)
{ b ? , ..., O (n&k+1)

{ b ? ])) (79)

with _k as in (75). Without loss of generality let ?=Id. We will prove by
induction that for all l=n&k+1, n&k, ..., 2 holds

Wn&k(S (n&k+1)
Id )

= :

{(1)� } } } �{(l&1)

{ # 6n, n&k+1

Wn&k(conv(S (l&1)
{ _ [O (l)

{ , ..., O (n&k+1)
{ ])) `

n&k

j=l&1

sig ( j)
_k

(B, {)

(80)

with S ( j)=S ( j)
Id .

Equation (79) follows from (80) with l=2 as S (1)
{ =[O (1)

{ ] and
sig ( j)

_k
(B, {)=1 for j=n&k+1, ..., n&1 and regular B.

We remark that S (l&1)
{ =conv([bi |i=1, ..., n&k+1, i{{(l), ...,

{(n&k+1)]) is well defined even if only the tail ({(l), ..., {(n&k+1))
of the permutation { is known. The same is true for O (l)

{ , ..., O (n&k+1)
{ and

sig (l&1)
_k

(B, {), ..., sig (n&k)
_k

(B, {), which depend exclusively on the choice of
the tail ({(l), ..., {(n&k+1)) as well. Hence, the right hand side of (8) can
be interpreted as a cumulation on the choice of {(l), ..., {(n&k+1), where
the order of the other indices {(1), ..., {(l&1) is preserved.

The induction for proving (80) is based on the following dissection
of the spherical angle Wn&k(conv(S ( j)

{ _ [O ( j+1)
{ , ..., O (n&k+1)

{ ])). For
j=n&k+1, ..., 2 holds

Wn&k(conv(S ( j)
{ _ [O ( j+1)

{ , ..., O (n&k+1)
{ ]))

= :

{~ (1)� } } } �{~ ( j&1)

{~ # 6n, n&k+1
{~ ( j+1)={(j+1), ..., {~ (n)={(n)

[/1&/2](S ( j)
{~ , S ( j&1)

{~ , O ( j)
{~ )

_Wn&k(conv(S ( j&1)
{~ _ [O ( j)

{~ , ..., O (n&k+1)
{~ ]))

= :

{~ (1)� } } } �{~ ( j&1)

{~ # 6n, n&k+1
{~ ( j+1)={(j+1), ..., {~ (n)={(n)

sig ( j&1)
_k

(B, {~ )

_Wn&k(conv(S ( j&1)
{~ _ [O ( j)

{~ , ..., O (n&k+1)
{~ ])). (81)
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We remark that O ( j)
{~ does only depend on { and not on the particular

choice of {~ . By definition, O ( j)
{~ is the ortho-projection of O ( j+1)

{ onto
E ( j)

{ =aff(S ( j)
{ ).

We will explain formula (81) geometrically rather than to give a formal
proof.

Before we state the general principle let us look at two particular
cases with k=1, j=2, and n=3 with {=(3, 2, 1). Figure 5 shows the dis-
section of conv(S (2)

{ _ [O (3)
{ ]) in the E (3)

{ -plane, which reflects the
dissection of W2(conv(S (2)

{ _ [O (3)
{ ])). On the left hand side we have

conv(S (2)
{ _ [O (3)

{ ]) = conv(S (1)
{~ 1 _ [O (2)

{~ 1 , O (3)
{~ 1 ])"conv(S (1)

{~ 2 _ [O (2)
{~ 2 , O (3)

{~ 2 ])
with {~ 1=(2, 3, 1) and {~ 2={, which yields W2(conv(S (2)

{ _ [O (3)
{ ]))=

W2(conv(S (1)
{~ 1 _ [O (2)

{~ 1 , O (3)
{~ 1 ]))&W2(conv(S (1)

{~ 2 _ [O (2)
{~ 2 , O (3)

{~ 2 ])). On the
right hand side we have conv(S (2)

{ _ [O (3)
{ ])=conv(S (1)

{~ 1 _ [O (2)
{~ 1 , O (3)

{~ 1 ]) _
conv(S (1)

{~ 2 _ [O (2)
{~ 2 , O (3)

{~ 2 ]) with {~ 1 , {~ 2 as above. Thus, it holds
W2(conv(S (2)

{ _ [O (3)
{ ])) = W2(conv(S (1)

{~ 1 _ [O(2)
{~ 1 , O (3)

{~ 1 ]))+W2conv(S (1)
{~ 2 _

[O(2)
{~ 2 , O (3)

{~ 2 ])).
Taking the two examples of the figure as a guide, we can interpret

formula (81) in the following way. The spherical measure
Wn&k(conv(S ( j)

{ _ [O ( j+1)
{ , ..., O (n&k+1)

{ ])) can be written as a sum of the
spherical measures Wn&k(conv(S ( j&1)

{~ _ [O ( j)
{~ , ..., O (n&k+1)

{~ ])) that are
associated to the j different facets S ( j&1)

{~ of S ( j)
{ . The contribution

Wn&k(conv(S ( j&1)
{~ _ [O ( j)

{ , ..., O (n&k+1)
{~ ])) is added if S ( j&1)

{~ is a S ( j)
{ -facet

of the first kind with respect to O ( j)
{ and is subtracted if S ( j&1)

{~ is a S ( j)
{ -

facet of the second kind with respect to O ( j)
{ .

We start the induction for proving (80) with l=n&k+1. Here, (81) is
obviously identical with (80) and we are done. Now, we assume that (80) is
true for an l # [3, ..., n&k+1] and we will show that then (80) will hold
for l&1 as well. We dissect Wn&k(conv(S (l&1)

{ _ [O (l)
{ , ..., O (n&k+1)

{~ ]))
using (81) and obtain

FIG. 5. The dissection of W2(conv(S (2)
{ _ [O (3)

{ ])) for {=(3, 2, 1).
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Wn&k(S (n&k+1))

= :

{(1)� } } } �{(l&1)
{ # 6n, n&k+1

`
n&k

j=l&1

sig ( j)
_k

(B, {)

_ :

{~ (1)� } } } �{~ (l&2)

{~ # 6n, n&k+1
{~ (l)={(l), ..., {~ (n)={(n)

sig (l&2)
_k

(B, {~ )

_Wn&k(conv(S (l&2)
{~ _ [O (l&1)

{~ , ..., O (n&k+1)
{~ ]))

= :

{~ (1)� } } } �{~ (l&2)
{~ # 6n, n&k+1

Wn&k(conv(S (l&2)
{~ _ [O (l&1)

{~ , ..., O (n&k+1)
{~ ]))

_ `
n&k

j=l&2

sig ( j)
_k

(B, {~ ). (82)

Now, the induction is complete and (79) is proven.
Stage 2. The objective of this stage is to conclude from (79) that

:
? # 6n

Wn&k(S (n&k+1)
? )

=(n&k+1)! :
\ # 6n

sig_k(B, \) Wn&k(conv([O (1)
\ , ..., O (n&k+1)

\ ])). (83)

We observe that the summands on the right hand side of (79) depend only
from { b ?. Thus, it seems natural to substitute \={ b ? and to ask how
often each \ will arise in the sum. We will show for every \ # 6n that there
exist exactly (n&k+1)! combinations of ? # 6n and { # 6n, n&k+1 such
that \={ b ?. These combinations can be encountered as follows: given a
permutation \ # 6n , then, there exist exactly (n&k+1)! permutations
? # 6n with \( j)=?( j) for j=n&k+2, ..., n. We fix such a choice of ? and
choose { # 6n, n&k+1 in such a way that { b ?( j)=\( j) for j=1, ..., n&k+1.
This choice of { is uniquely determined. It is easily checked that ? runs
through 6n and { through 6n, n&k+1 if \ runs through 6n . Thus, (83) is
fulfilled.

Stage 3. Finally, we will represent Wn&k(conv([O (1)
\ , ..., O (n&k+1)

\ ]))
from (83) by an integral, where we assume without loss of generality
that \=Id. The spherical angle Wn&k(conv([O (1), ..., O(n&k+1)]))
with O( j)=O ( j)

Id is invariant under rotations. With the aid of definition
(59), we conclude that the (n&k)-dimensional spherical angle of
conv([O(1), ..., O(n&k+1)]) equals the (n&k)-dimensional spherical angle
generated by the (n&k)-dimensional simplex
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7� (n&k+1)(h)
0 0 h(1)

b b b
b 0 b

:=conv\{\ 0 + , \ h(n&k) + , ..., \ h(n&k) +=+ . (84)

h(n&k+1) h(n&k+1) h(n&k+1)

b b b
h(n) h(n) h(n)

Hence, we have Wn&k(conv([O(1), ..., O(n&k+1)]))=Wn&k(7� (n&k+1)(h)),
where

7� (n&k+1)(h)=h(n&k+1)en&k+1+ } } } +h(n)en+\7(n&k+1)(h)
0 + (85)

with 7(n&k+1)(h) as in (74). By definition (41) of the spherical angle we get

Wn&k(conv([O(1), ..., O(n&k+1)]))

=Wn&k(7� (n&k+1)(h))

=
*n&k(cone(7� (n&k+1)(h)) & Sn&1)

+n&k+1

=
rn&k+1(h)

+n&k+1
|

7(n&k+1)(h)

dz
(&z&2

2+r2
n&k+1(h)) (n&k+1)�2 (86)

and Stage 3 is complete.
Now, we insert (79) and (83) into (77) and obtain

.k(B)= :
\ # 6n

sig_k(B, \)
2
k!

Wn&k(conv([O (1)
\ , ..., O (n&k+1)

\ ])), (87)

from which the claim follows if we replace Wn&k(conv([O (1)
\ , ..., O(n&k+1)

\ ]))
in (79) by the integral representation given in (86). K

From Definition 5(ii) we conclude:

Corollary 4. The functional 8k is standard-reducible.

In the next section we will profit from the standard-reducibility of 8k

when we are going to calculate the asymptotic expectation of 8k .
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3. THE ASYMPTOTIC EXPECTED NUMBER OF
EFFICIENT VERTICES

In this section we want to calculate the asymptotic expectation for
the average number 8k from (40) asymptotically for distributions with
algebraic tail, cf. Section 1. As we learned from Theorem 2 and Corollary 3,
this will be sufficient for proving Theorem 1.

In Subsection 3.1 we will provide an integral formula for standard-
reducible polytope functionals under spherically symmetric distributions
with algebraic tail in the unit ball, which we will use in the second subsec-
tion for estimating E(8k).

3.1. Expectations under Distributions with Algebraic Tail

Let 8 be a standard-reducible polytope functional with facet-functional
,, cf. Definitions 1 and 5. In Ku� fer (1997), we provided an integral formula
for expectations of standard-reducible polytope functionals in the Rotation
Symmetry Model under the additional assumption that the underlying
distribution has a density function: Let a be spherically symmetrically dis-
tributed in Rn with radial distribution function F. Then, the distribution of
a # Rn has a density function if there exists a positive function f # L1(Rn)
such that F(t)=�tUn f (a) da for all t # R+

0 , where Un denotes the unit ball
in Rn.

We report the result of Ku� fer (1997) reduced to our needs:

Theorem 4 (Ku� fer, 1997). Let 8 be a facet-additive polytope functional
with standard-reducible facet-functional , and m�n�1. For distributions
satisfying the (RIC) with density f holds

E(8)=(m)n |
[0, �)

Gm&n(h(n)) 4,(h(n)) dh(n) (88)

with

G(') :=1&
+n&1

+n
|

�

'
|

1

'�t
(1&`2) (n&3)�2 d` dF(t) (89)

and

4,(h(n)) :=|
[0, �)n&1

p_(h) �(h) dh(1) } } } dh(n&1), (90)
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where

p_(h) :=+n `
n&1

j=1

p ( j)
_ (h) f (h),

p ( j)
_ (h)=+j |

Rj
[/(! ( j)

j �h( j))&_( j)/(! ( j)
j �h( j))]|! ( j)

j &h( j)|n& j

_f (!j |h( j+1), ..., h( j)) d!j (91)

This subsection will give a formula for E(8) in case of spherically sym-
metric distributions in the unit ball with algebraic tail.

Let F be a radial distribution function with algebraic tail in the unit ball,
i.e.,

F(t)=1 for t�1 (92)

and F� =1&F satisfies

F� (t)tN(1&t)# (93)

for t � 1. The relation t in (93) means that the quotient of both sides
approaches 1 if t � 1. As a first step, we are going to analyse the
asymptotic behaviour of G(') for ' � 1, which can be easily derived from
the definition of G:

Lemma 4 (Ku� fer, 1988). If the radial distribution function F satisfies
(92)�(93) we have for ' � 1

1&G(')t
+n&1

+n

N
2#+1 B \n&1

2
, #+1+ (1&'2) (n&1+2#)�2. (94)

The asymptotic evaluation of 4, is a bit more complicated. We
begin with the functions p( j)

_ given in (91). In order to present the
result we need some additional notation. Like in (73), let rj=rj (h)=
((h( j))2+ } } } +(h(n))2)1�2 be the tail norm of the vector h. Moreover, for
distributions supported by the unit ball it will be advantageous to have
normalized coordinates besides h(1), ..., h(n). We define ' i by

h(i)=(1&r2
i+1)1�2 'i (95)

for i=1, ..., n. Then, if h(i) ranges in [0, (1&r2
i+1)1�2], ' i ranges in [0,1]. In

this notation we have the following representation of p ( j)
_ :
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Lemma 5. Under spherically symmetric distributions with algebraic tail
in the unit ball holds for j=1, ..., n

p ( j)
_ (h)t

+j

+n

N#
2#&1(1&r2

j+1) (n&2+2#)�2 g (n& j, j)
_(j) ('j), (96)

with h(n) � 1 and h(l) � 0, l=1, ..., n&1. The functions g (l, j)
: are given by

g (l, j)
: (') :=|

1

0
|

Sj&1
[/(`|( j)�')&:/(`| ( j)�')]|'&`|( j)|l d+(|)

_` j&1(1&`2)#&1 d` (97)

for l�0 and : # [&1, 1].

Proof. For a distribution with density f holds

p ( j)
_ (h)=+j |

Rj
[/(!( j)�h( j))&_ ( j)/(!( j)�h( j))]|! ( j)&h( j)|n& j

_f (!|h j+1), ..., h (n)) d!, (98)

cf. (91). First, we will represent (98) in polar coordinates: let !=r| with
r # R+

0 and an | # S j&1. Moreover, let f� : R � R be defined by

f� (t) :=f (h$) for h$ # Rn with &h$&2=t. (99)

Finally, let g~ : be the distribution-independent function given by

g~ :(r) :=|
Sj&1

[/(r|( j)�h( j))&:/(r|( j)�h( j))]|r|( j)&h( j)|n& j d+(|), (100)

for r�0. With this notation, we obtain from (98)

p ( j)
_ (h)=+j |

�

0
g~ _(j)(r) r j&1f� ((r2+r2

j+1)1�2) dr. (101)

We substitute r2+r2
j+1=t2 and get with the aid of

f� ((r2+r2
j+1)1�2) dr=

1
+n

1
(t2&r2

j+1)1�2

dF(t)
tn&2 (102)
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the following representation of p ( j)
_ (h):

p ( j)
_ (h)=

+j

+n
|

�

rj+1

g~ _(j)((t2&r2
j+1)1�2)(t2&r2

j+1) ( j&2)�2 dF(t)
tn&2 . (103)

The representation (103) holds for all distributions in the Rotation
Symmetry Model and hence in particular for those satisfying (92)�(93).
We integrate by parts and obtain with (93) for h(n) � 1 and h(l) � 0,
l=1, ..., n&1,

p( j)
_ (h)t

+j

+n
N# |

1

rj+1

g~ _(j)((t2&r2
j+1)1�2)(t2&r2

j+1)( j&2)�2(1&t)#&1 dt

t
+j

+n

N#
2#&1(1&r2

j+1)( j&2+2#)�2 |
1

0
g~ _(j)((1&r2

j+1)1�2 `) ` j&1(1&`2)#&1 d`

=
+j

+n

N#
2#&1(1&r2

j+1)(n&2+2#)�2 g (n& j, j)
_(j) ('j). (104)

The second asymptotic equation in (104) results from the substitution
t2&r2

j+1=`2(1&r2
j+1), while the last equation simply exploits (95) and the

definitions of g (l, j)
: and g~ # , cf. (97) and (100). K

It is interesting that the functions p ( j)
_ can be asymptotically represented

as a simple product of two factors, where the latter depends only on 'j .
This will be very useful for the following. Though the functions g (l, j)

: in
(97) look a bit complicated at first sight, they have some nice properties,
which we list without the elementary proofs:

Remark. For j�2 and l>0 holds:

(i) g (l, j)
: is an odd function for :=+1 and an even function for

:=&1.

(ii) For : # [&1, 1],

�
�'

g (l+1, j)
: (')=(l+1) g (l, j)

&: ('). (105)

Having calculated the functions p ( j)
_ , we can now calculate 4,(h(n))

asymptotically for h(n) � 1:
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Lemma 6. For h(n) � 1 holds

4,(h(n))t
N#

2#&1 |
- 1&r2

n

0
} } } |

- 1&r2
2

0
�(h)

_ `
n&1

j=1

p ( j)
_ (h)(1&r2

1)#&1 dh(1) } } } dh(n&1). (106)

Proof. Like in the proof of Lemma 10 we start in the class of distri-
butions with density f. We know from (90) that for any distribution with
density holds

4,(h(n))=+n |
[0, �)n&1

�(h) `
n&1

j=1

p ( j)
_ (h) f (h) dh(1) } } } dh(n&1). (107)

Observing the connection between the radial distribution function F and
the density function f it is not hard to see that with t=((h(1))2+r2

2)1�2 we
have

f (h) dh(1)=
1

+n

1

- t2&r2
2

dF(t)
tn&2 . (108)

We insert this into (107) and get

4,(h(n))=|
[0, �)n&2 |

�

r2

`
n&1

j=1

p ( j)
_ (h)

�(h)

- t2&r2
2

dF(t)
tn&2 dh(2) } } } dh(n&1), (109)

which holds for all distributions of our model. Now, we assume that F
fulfills (92)�(93), integrate by parts, and obtain for h(n) � 1,

4,(h(n))

tN# |
- 1&r2

n

0
} } } |

- 1&r2
3

0
|

1

r2

�(h) `
n&1

j=1

p( j)
_ (h)

dh(1) } } } dh(n&1)

- t2&r2
2

t
N#

2#&1 |
- 1&r2

n

0
} } } |

- 1&r2
3

0
|

1

r2
�(h) `

n&1

j=1

p ( j)
_ (h)(1&r2

1)#&1 dh(1) } } } dh(n&1)

(110)

and the proof is complete. K
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For ease of notation, we normalize the domain of integration in (106).
For this purpose we substitute h(i) by ' i using (95) for i=1, ..., n. This
means, in particular,

- 1&r2
j = `

n

l= j

- 1&'2
l (111)

for j=1, ..., n and

(1&r2
1)#&1 dh(1) } } } dh(n&1)= `

n

j=1

(1&'2
j ) ( j&3+2#)�2 d'1 } } } d'n&1 . (112)

We insert this into (107) and obtain with 'n=h(n) � 1,

4,(h(n))t(1&(h(n))2) (n&3+2#)�2 N#
2#&1 |

[0, 1]n&1
�(h)

_ `
n&1

j=1

p ( j)
_ (h)(1&'2

j ) ( j&3+2#)�2 d'j (113)

with h=h('1 , ..., 'n&1). We recall the explicit formulae for p ( j)
_ from

Lemma 5 and get the following representation of 4, if we substitute
(1&r2

j )1�2 by the factorization (111):

Theorem 5. Let 8 be a standard-reducible polytope functional with
facet-functional , and m�n�1. Then, for spherically symmetric distribu-
tions in the unit ball with algebraic tail holds

E(8)=(m)n |
1

0
Gm&n(h(n)) 4,(h(n)) dh(n) (114)

with

4,(h(n))t
N#

2#&1(1&(h (n))2)[(n&2+2#) n&1]�2 |
[0, 1]n&1

�(h)

_ `
n&1

j=1

q ( j)
_ ('j) d'1 ...d'n&1 , (115)

for h(n) � 1, where h=h('1 , ..., 'n&1) and

q ( j)
_ (') :=

N#
2#&1

+j

+n
(1&'2)[(n&2+2#) j&n+ j&1]�2 g (n& j, j)

_(j) (') (116)

with functions g (l, j)
: as in (97) for j=1, ..., n&1.
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3.2. The Proof of Theorem 1

As an application of Theorem 5 we will now study the asymptotic
behaviour of the expectation E(8k) for fixed n and m � � for distributions
with algebraic tail in the unit ball. We will obtain the asymptotic behaviour
of the expected number of vertices in the contour and the expected number
of efficient vertices of X with respect to C for the same distributions as
corollaries.

By Corollary 4 and Theorem 4, the expectation E(8k) fulfills in case of
distributions in the unit ball with algebraic tail

E(8k)=(m)n |
1

0
Gm&n(h(n)) 4.k(h

(n)) dh (n) (117)

with 4.k as in (90) setting ,=.k and G as in (89).
The integral on the right hand side of (117) can be considered as a

Laplacian integral. For fixed n and big m the integrand in (117) is
dominated by its behaviour near h(n)=1 as the function G takes its maxi-
mum in h(n)=1. Hence, for the evaluation of E(8k) for fixed n and big m
it is sufficient to know the asymptotic behaviour of 4.k(h

(n)) near h(n)=1.
By (115), 4.k(h(n)) is a weighted integral of the r-simplex-functional �k .
Thus, in order to calculate the asymptotic behaviour of 4.k near h(n)=1
we need to know the asymptotic behaviour of �k(h) for h(n) near 1 and h( j)

near 0 for j=1, ..., n&1:

Lemma 7. For h(n) � 1 and h( j) � 0, j=1, ..., n&1, holds

�k(h)t
2
n!

1
+n&k+1 \

n
k+ `

n&k

j=1

h( j)

=
2
n!

1
+n&k+1 \

n
k+ `

n

j=n&k+1

(1&'2
j ) (n&k)�2 `

n&k

j=2

(1&'2
j ) ( j&1)�2 'j . (118)

Proof. We consider �k in the representation (76) from Theorem 3,

�k(h)=
2
n!

1
+n&k+1

|
7(n&k+1)(h)

rn&k+1(h)
(&z&2

2+r2
n&k+1(h)) (n&k+1)�2 dz, (119)

where rj (h)=((h( j))2+ } } } +(h(n))2)1�2 and

7(n&k+1)(h)=conv\{\
0
b
b
0+ , \

0
b
0

h (n&k)+ , ..., \
h(1)

b
h(n&k&1)

h(n&k) +=+ . (120)
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If h(n) � 1 and h( j) � 0, j=1, ..., n&1, we know that rn&k+1(h) � 1 and
hence

�k(h)t
2
k!

1
+n&k+1

*n&k(7(n&k+1)(h)). (121)

With *n&k(7(n&k+1)(h))=1�(n&k)! >n&k
j=1 h( j) we obtain the desired

formula

�k(h)t
2

k!(n&k)!
1

+n&k+1

`
n&k

j=1

h( j). (122)

The second equation of (118) follows by invoking the substitution
h(i)=(1&r2

i+1)1�2 ' i and observing (111). K

Next, we will exploit Lemma 7 for the calculation of 4.k(h
(n)) near

h(n)=1. More precisely, we will calculate the asymptotic behaviour of the
quotient 4.k(h

(n))�4.1
(h(n)) near h(n)=1. This will be sufficient for us as

4.1
(h(n)) is explicitly known in terms of G, cf. Theorem 6. Immediately

from Theorem 5 we obtain the asymptotic behaviour of 4.k(h(n))�4.1
(h(n))

for h(n) near 1 if we invoke the factorization of �k given in Lemma 7:

Corollary 5. For k=1, ..., n and h(n) � 1 holds

4.k(h
(n))

4.1
(h(n))

tDk(n)(1&h(n))2)&(k&1)�2 (123)

with

Dk(n) :=
1
n

+n

+n&k+1 \
n
k+ `

k&1

l=1

dl, k(n), (124)

where

dl, k(n) :=
|

1

0
g (l, n&l)

&1 (')(1&'2)[(n&1+2#)(n&l)&k&1]�2 d'

|
1

0
g (l, n&l)

+1 (')(1&'2)[(n&1+2#)(n&l)&l&2]�2 ' d'

. (125)

The function 4.1
can be given in a surprisingly simple way. Our proof

presented here is strongly based on earlier work Ku� fer (1988) of the
author, where the nontrivial part of work was done:
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Theorem 6. For ' # [0, 1] holds

4.1
(')=

2
(n&1)!

(1&G('))n&1 �
�'

G('). (126)

Proof. In Ku� fer (1988) we analyzed the function 4V� defined by

4V� (') :=E(Wn&1(conv(B))|h(n)=')
dPr(h(n)�')

d'
(127)

for ' # [0, 1] with h(n)=h (n)
Id as in (62). Corollary 3 delivers in the par-

ticular case k=1 for regular B

.1(B)=2Wn&1(conv(B)) (128)

which yields inserted into (127) that

4V� (')=
1
2

E(.1(B)|h (n)=')
dPr(h(n)�')

d'
(129)

for ' # [0, 1]. If we reduce .1 via rectangular simplices, we get observing
the definition of 4.1

4V� (')=
n!
2

4.1
(') (130)

for ' # [0, 1]. In Ku� fer (1988) we proved that 4V� fulfills

4V� (')=n(1&G('))n&1 �
�'

G(') (131)

for ' # [0, 1], which yields the claim if we insert (131) into (130). K

Now, we are ready for the asymptotic evaluation of E(8k) for fixed n
and k and m � �. We apply Watson's Lemma for Laplacian integrals and
replace 4.k in (117) by two factors, the first of which is given by the right
hand side of (123) and the second by the right hand side of (126). If we
replace, in addition, h(n) by ', we obtain for m � �

E(8k)t2 Dk(n) n \m
n + |

1

0
Gm&n(')(1&G('))n&1(1&'2)&(k&1)�2 dG(').

(132)
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We express (1&'2)&(k&1)�2 in terms of G: From (94), we obtain for ' � 1

(1&'2)&(k&1)�2
t\+n&1

+n

N
2#+1 B \n&1

2
, #+1++

(k&1)�(n&1+2#)

_(1&G('))&(k&1)�(n&1+2#). (133)

If we insert this into (132) and substitute G(')=1&`, we get for m � �

E(8k)t2 Dk(n) \+n&1

+n

N
2#+1 B \n&1

2
, #+1++

(k&1)�(n&1+2#)

_n \m
n + |

1�2

0
(1&`)m&n `n&1&(k&1)�(n&1+2#) d`

t2 Dk(n) \+n&1

+n

N
2#+1 B \n&1

2
, #+1++

(k&1)�(n&1+2#)

_
1(n&(k&1)�(n&1+2#))

1(n)
m(k&1)�(n&1+2#). (134)

Thus, if we define

K� #(n, k) :=2&k+1Dk(n) \+n&1

+n

N
2#+1 B \n&1

2
, #+1++

(k&1)�(n&1+2#)

_
1(n&(k&1)�(n&1+2#))

1(n)
,

K
�

#(n, k) :=
k

\ n
k&1+

K� #(n, k), (135)

we have the following result:

Corollary 6. Given a spherically symmetric distribution whose radial
distribution function satisfies (92)�(93), it holds for fixed n, k and m � �

(i) E(8k)t2kK� #(n, k) m(k&1)�(n&1+2#) (136)

(ii) K
�

#(n, k) m(k&1)�(n&1+2#)(1+o(1))

�2&kE(V� k)�K� #(n, k) m(k&1)�(n&1+2#)(1+o(1)) (137)
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(iii) K
�

#(n, k) m(k&1)�(n&1+2#)(1+o(1))

�2&kE(v� k)�K� #(n, k) m(k&1)�(n&1+2#)(1+o(1)) (138)

Proof. While the first item has been proven above, the second item is
immediate from (i) and Corollary 3. The last item exploits Theorem 2,
which yields

2&kE(V� k)�E(v� k)�2&kE(V� k)+ :
k&1

l=1

2&l \k
l+ E(V� l). (139)

From (ii) we know that E(V� l)=O(m(l&1)�(n&1+2#)) for fixed n, m � � and
l=1, ..., k&1. Hence, for fixed n and m � � holds

E(v� k)t2&kE(V� k), (140)

from which item (iii) follows.
We remark that (140) can be proven by simple asymptotic arguments

without knowledge of the more involved Theorem 2. But, for further publi-
cations concerning estimates of E(v� k) it will be useful to have proper
bounds of v� k in terms of V� k as well. K

Item (iii) of Corollary 6 corresponds to Eq. (9) of Theorem 1. In order
to complete the proof of Theorem 1 it remains to establish the asymptotic
behaviour of K� #(n, k) that was stated in (10) for n � � and fixed k.

If we look a bit closer at the definition of K� #(n, k) in (135), we see that
for fixed k and n � � holds

K� #(n, k)t2&k+1Dk(n), (141)

as we may conclude with the aid of Stirling's formula and from the defini-
tion of +j that for n � � holds

1(n&(k&1)�(n&1+2#))
1(n)

� 1

and

\+n&1

+n

N
2#+1 B \n&1

2
, #+1++

(k&1)�(n&1+2#)

� 1. (142)
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Hence, we concentrate our attention to Dk(n) from (124). The most inter-
esting factors of Dk(n) are the integral quotients dl, k(n) from (125). We
observe the following asymptotic behaviour of dl, k(n) for large n:

Lemma 8. For fixed k, l=1, ..., k&1 and n � � holds

dl, k(n)t
n3�2

- 2

1((l+1)�2)
1((l+2)�2)

. (143)

Proof. If we want to estimate dl, k(n) we need first of all upper and
lower bounds for the functions g (l, j)

: . From (105), we conclude that g (l, j)
:

has non-negative derivatives up to the degree l. Moreover, we know that,
for odd j the j th derivative of g (l, j)

+1 vanishes in 0, as g (l, j)
+1 is an odd

function. Hence, we obtain the following bounds for g (l, j)
: (') by Taylor

expansions in 0

g(l, j)
&1 (')�g (l, j)

&1 (0) (144)

and

lg (l&1, j)
&1 (0) '�g (l, j)

+1 (')�lg (l&1, j)
&1 (0) '+\l

3+ g (l&3, j)
&1 (') '3. (145)

On the other hand, if we estimate |'&`|l��l
i=0 ( l

i )|'| i|`|l&i in the
definition (97) of g (l, j)

&1 ('), we get the upper bound

g (l, j)
&1 (')� :

l

i=0
\l

i+ g (l&i, j)
&1 (0) 'i. (146)

We insert this into (144) and (145) and obtain the inclusions

g(l, j)
&1 (0)�g (l, j)

&1 (')� :
l

i=0
\l

i+ g (l&i, j)
&1 (0) 'i (147)

and

lg (l&1, j)
&1 (0) '

�g (l, j)
+1 (')

�lg (l&1, j)
&1 (0) '+\l

3+ :
l&3

i=0
\l&3

i + g (l&3&i, j)
&1 (0) ' i+3. (148)
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We use these inclusions for estimating dl, k(n) from above and from below
and obtain the following bounds:

Upper bound of dl, k(n):

dl, k(n)�d� l, k(n) } (1+2l, k(n)) (149)

with

d� l, k(n) :=
g (l, n&l)

&1 (0)
lg (l&1, n&l)

&1 (0)

|
1

0
(1&'2)[(n&1+2#)(n&l)&1&k]�2 d'

|
1

0
(1&'2)[(n&1+2#)(n&l)&l&2]�2 '2 d'

(150)

and

2l, k(n) := :
l

i=1
\l

i+
g (l&i, n&l)

&1 (0)
g (l, n&l)

&1 (0)

|
1

0
(1&'2)[(n&1+2#)(n&l)&1&k]�2 'i d'

|
1

0
(1&'2)[(n&1+2#)(n&l)&l&2]�2 d'

(151)

Lower bound of dl, k(n):

dl, k(n)�d� l, k(n) }
1

1+$l, k(n)
(152)

with d� l, k(n) as in (150) and

$l, k(n) :=\l

3+ :
l&3

i=0
\l&3

i + g (l&3&i, n&l)
&1 (0)

lg (l&1, n&l)
&1 (0)

_
|

1

0
(1&'2)[(n&1+2#)(n&l)&l&2]�2 ' i+4 d'

|
1

0
(1&'2)[(n&1+2#)(n&l)&l&2]�2 '2 d'

. (153)

We will show that d� l, k(n) is the dominating part in each bound for large
n. More, precisely we want to show that for n � � holds

$l, k(n) � 0 and 2l, k(n) � 0. (154)
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For this purpose we use two asymptotic equations, which are easily verified
with the help of Stirling's formula:

(i) For fixed i, j, l # N0 and n � �,

g (i, n&l)
&1 (0)

g ( j, n&l)
&1 (0)

t\n
2+

( j&i)�2 1((i+1)�2)
1(( j+1)�2)

. (155)

(ii) For fixed i, j # N0 and n � �,

|
1

0
(1&'2)n2�2(1+o(1)) 'i d'

|
1

0
(1&'2)n2�2(1+o(1)) ' j d'

t\ n

- 2+
j&i 1((i+1)�2)

1(( j+1)�2)
. (156)

Using (i) and (ii) we obtain for n � � and fixed k, l

2l, k(n)= :
l

i=1

O(n i�2n&i)=O(n&1�2) (157)

and

$l, k(n)= :
l&3

i=0

O(n(2+i)�2n&2&i)=O(n&3�2). (158)

Thus, we have for n � � and fixed l, k

dl, k(n)=d� l, k(n)(1+O(n&1�2)). (159)

It remains to study the asymptotic behaviour of d� l, k(n), which we do again
with the help of (i) and (ii). It holds for n � �

d� l, k(n)t\n
2+

&1�2 1((l+1)�2)
l1(l�2)

n2

2
1(1�2)
1(3�2)

t
n3�2

- 2

1((l+1)�2)
1((l+2)�2)

. (160)

and the proof of (143) is complete. K
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We now are ready to establish line (10) of Theorem 1. An immediate
consequence of Lemma 8 is the following asymptotic equivalent for the
product of the functions dl, k(n) for n � � and fixed k

`
k&1

l=1

dl, k(n)t\n3

2 +
(k&1)�2 1

1((k+1)�2)
. (161)

Moreover, from the definition of +j we conclude that for n � � and fixed
k holds

1
n

+n

+n&k+1 \
n
k+t\2?

n +
(k&1)�2 nk&1

k!
. (162)

If we put (161) and (162) together, we obtain the following asymptotics for
Dk(n) if k is fixed and n � �:

Dk(n)t
?(k&1)�2

1((k+1)�2)k!
n2(k&1). (163)

From this we obtain with (135) the desired asymptotic behaviour of
K� #(n, k):

Corollary 7. For fixed k and n � �:

K� #(n, k)t\- ?
2 +

k&1 1
k!1((k+1)�2)

} n2(k&1). (164)

3.3. Concluding Remarks and Open Problems
At the end of our presentation we report about some related results and

some open problems in the probabilistic analysis of the number of efficient
vertices within the Rotation Symmetry Model.

It is the outcome of Theorem 1 that the order of growth in m on the
right hand side of (9) becomes smaller for growing #, which is due to the
fact that the tail of the distribution becomes thinner if # is growing.

Theorem 1 remains true within the bigger class of regularly varying
distributions in the unit ball, cf. Carnal (1970), and Ku� fer (1992, 1994).

It is not satisfying that there is a gap between lower and upper bound
of E(v) and E(V) with respect to the growth of n, which is caused by the
estimate in Lemma 2. We conjecture that for large n the expected value is
very close to the upper bound.

Another interesting question is the question for the reliability of the
expectations E(v) or E(V): Is it possible to prove that large deviations from
the expectation become rare for large m and fixed n, k? This is the question
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for a tailbound of the distribution of the number of efficient vertices resp.
the number of vertices in the contour.

In order to estimate tailbounds we need some more information about
the random variable under consideration: one natural way to estimate
tailbounds is Chebychev's inequality, which requires information about the
variance:

Pr \} 8
E(8)

&1}�'+�
1
'2 }

Var(8)
E2(8)

, '>0. (165)

We have some experience in estimating variances of facet-additive polytope
functionals from above: in Ku� fer (1992, 1995) we estimated the variance for
the number of pivot steps required by Phase II of Borgwardt's parametric
variant of the simplex method for fixed n and m � �. With a similar
technique it is possible to obtain asymptotic upper bounds for the variance
of the number of efficient vertices in the contour:

Under the assumptions of Theorem 1 it holds for fixed k, n and m � �,

Var(V)
E2(V)

=O(m&(k&1)�(n&1+2#)). (166)

In the light of Chebychev's inequality (166) means that even small devia-
tions from the expectated number of vertices in the contour are unlikely if
n, k are fixed and m is large. But, unfortunately this is not true for the
number of efficient vertices: here, the quotient Var(v)�E2(v) does not tend
to zero for fixed k, n and distributions with #-algebraic tail in the ball, if m
gets large. The quotient converges to a constant depending on #, k, and n,
which tends to zero for fixed k and n � �. So, an interesting open question
is whether there exist distributions in the Rotation Symmetry Model such
that the quotient Var(v)�E2(v) is bounded from above by a function in n,
which tends to zero for fixed k if n � �.

So far, we have reported exclusively about asymptotic results for m � �
and fixed n, k. Of great interest in optimization theory are proper distribu-
tion independent estimates of E(v) and E(V) respectively for fixed k and
arbitrary n and m, which are meaningful even for moderate choices of n
and m. We conjecture that for fixed k the expectation of E(V) and hence-
forth E(v) is polynomially bounded in terms of n and m. More precisely,
we believe that the following holds:

Conjecture. There exists a constant K depending exclusively on k such
that for all distributions in the Rotation Symmetry Model and all n, m and
fixed k holds

E(V)�Kn2(k&1)m(k&1)�(n&1). (167)
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