98 research outputs found

    Coherent control of collective nuclear quantum states via transient magnons

    Get PDF
    Ultrafast and precise control of quantum systems at x-ray energies involves photons with oscillation periods below 1 as. Coherent dynamic control of quantum systems at these energies is one of the major challenges in hard x-ray quantum optics. Here, we demonstrate that the phase of a quantum system embedded in a solid can be coherently controlled via a quasi-particle with subattosecond accuracy. In particular, we tune the quantum phase of a collectively excited nuclear state via transient magnons with a precision of 1 zs and a timing stability below 50 ys. These small temporal shifts are monitored interferometrically via quantum beats between different hyperfine-split levels. The experiment demonstrates zeptosecond interferometry and shows that transient quasi-particles enable accurate control of quantum systems embedded in condensed matter environments

    Zur pathologischen Physiologie des respiratorischen Stoffwechsels

    No full text

    Zur pathologischen Physiologie des respiratorischen Stoffwechsels

    No full text
    corecore