14 research outputs found

    Genotype and Growing Environment Interaction Shows a Positive Correlation between Substrates of Raffinose Family Oligosaccharides (RFO) Biosynthesis and Their Accumulation in Chickpea (Cicer arietinum L.) Seeds

    Get PDF
    To develop genetic improvement strategies to modulate raffinose family oligosaccharides (RFO) concentration in chickpea (Cicer arietinum L.) seeds, RFO and their precursor concentrations were analyzed in 171 chickpea genotypes from diverse geographical origins. The genotypes were grown in replicated trials over two years in the field (Patancheru, India) and in the greenhouse (Saskatoon, Canada). Analysis of variance revealed a significant impact of genotype, environment, and their interaction on RFO concentration in chickpea seeds. Total RFO concentration ranged from 1.58 to 5.31 mmol/100 g and from 2.11 to 5.83 mmol/100 g in desi and kabuli genotypes, respectively. Sucrose (0.60−3.59 g/100 g) and stachyose (0.18−2.38 g/ 100 g) were distinguished as the major soluble sugar and RFO, respectively. Correlation analysis revealed a significant positive correlation between substrate and product concentration in RFO biosynthesis. In chickpea seeds, raffinose, stachyose, and verbascose showed a moderate broad sense heritability (0.25−0.56), suggesting the use of a multilocation trials based approach in chickpea seed quality improvement programs

    Isolation and identification of α-amylase producing Bacillus sp. from dhal industry waste

    No full text
    295-298A bacterial strain was isolated from dhal industry red gram waste and identified as Bacillus. A thermostable extracellular amylase was partially purified from the strain. Optimum temperature and pH for the enzyme were found to be 60C and 6.5, respectively. The maximum amylase production was achieved with maltose as carbon source. Among the nitrogen sources, peptone and yeast extract produced maximum amylase

    Oligosaccharins of Black Gram (vigna mungo l.) as Affected by Processing Methods

    No full text
    The oligosaccharide content was determined in 12 different cultivars of black gram. The effect of various treatments such as soaking, cooking, and enzyme treatment on the raffinose family oligosaccharides of dry seeds and flour was studied. Ajugose, a higher oligosaccharide (DP 6) found in trace quantities in seeds, was shown in black gram by HPLC. The percent reduction of raffinose, stachyose, verbascose, and ajugose after soaking for 16 hr was 41.66%,47.61%,28.48%, and 26.82%, respectively in Local-I variety and 43.75%, 20.58%, 23.60%, and 15.88%, respectively in Local-II variety. Cooking for 60 min resulted in decrease of 100% for raffinose, 76.19% for stachyose, 36.39% for verbascose, and 60.97% for ajugose in Local-I variety and 100% for raffinose, 55.88% for stachyose, 48.52% for verbascose, and 56.07% for ajugose in Local-II variety. Thin layer chromatographic analysis of 3 hr enzyme-treated samples revealed almost complete hydrolysis of raffinose family of oligosaccharides. Among the different methods employed, enzyme treatment was found to be the most effective for removing alpha-galactosides in black gram

    Hypersensitive reaction and P/HRGP accumulation is modulated by nitric oxide through hydrogen peroxide in pearl millet during Sclerospora graminicola infection

    No full text
    Priming of pearl millet seedlings with nitric oxide (NO) donors sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG) induced hypersensitive reactions (HR) and accumulation of Proline/Hydroxyproline-rich glycoprotein (P/HRGP) during infection by downy mildew pathogen Sclerospora graminicola. Such defense responses were specifically altered by concentration of NO donors resulting in the modulation of endogenous NO in seedling tissues. The stoichiometric interactions of NO and hydrogen peroxide (H<SUB>2</SUB>O<SUB>2</SUB>) when followed in relation to HR and P/HRGP accumulation, the degree of defense response varied with H<SUB>2</SUB>O<SUB>2</SUB> level, the latter being largely influenced by NO concentration. Therefore, balancing NO and H<SUB>2</SUB>O<SUB>2</SUB> is vital for optimum expression of defense responses for imparting disease resistance
    corecore