1,588 research outputs found

    The Phase Diagram of Crystalline Surfaces

    Get PDF
    We report the status of a high-statistics Monte Carlo simulation of non-self-avoiding crystalline surfaces with extrinsic curvature on lattices of size up to 1282128^2 nodes. We impose free boundary conditions. The free energy is a gaussian spring tethering potential together with a normal-normal bending energy. Particular emphasis is given to the behavior of the model in the cold phase where we measure the decay of the normal-normal correlation function.Comment: 9 pages latex (epsf), 4 EPS figures, uuencoded and compressed. Contribution to Lattice '9

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=NN_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=N+N/(N++N)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    Self-consistent variational theory for globules

    Full text link
    A self-consistent variational theory for globules based on the uniform expansion method is presented. This method, first introduced by Edwards and Singh to estimate the size of a self-avoiding chain, is restricted to a good solvent regime, where two-body repulsion leads to chain swelling. We extend the variational method to a poor solvent regime where the balance between the two-body attractive and the three-body repulsive interactions leads to contraction of the chain to form a globule. By employing the Ginzburg criterion, we recover the correct scaling for the θ\theta-temperature. The introduction of the three-body interaction term in the variational scheme recovers the correct scaling for the two important length scales in the globule - its overall size RR, and the thermal blob size ξT\xi_{T}. Since these two length scales follow very different statistics - Gaussian on length scales ξT\xi_{T}, and space filling on length scale RR - our approach extends the validity of the uniform expansion method to non-uniform contraction rendering it applicable to polymeric systems with attractive interactions. We present one such application by studying the Rayleigh instability of polyelectrolyte globules in poor solvents. At a critical fraction of charged monomers, fcf_c, along the chain backbone, we observe a clear indication of a first-order transition from a globular state at small ff, to a stretched state at large ff; in the intermediate regime the bistable equilibrium between these two states shows the existence of a pearl-necklace structure.Comment: 7 pages, 1 figur

    Knots in Charged Polymers

    Full text link
    The interplay of topological constraints and Coulomb interactions in static and dynamic properties of charged polymers is investigated by numerical simulations and scaling arguments. In the absence of screening, the long-range interaction localizes irreducible topological constraints into tight molecular knots, while composite constraints are factored and separated. Even when the forces are screened, tight knots may survive as local (or even global) equilibria, as long as the overall rigidity of the polymer is dominated by the Coulomb interactions. As entanglements involving tight knots are not easy to eliminate, their presence greatly influences the relaxation times of the system. In particular, we find that tight knots in open polymers are removed by diffusion along the chain, rather than by opening up. The knot diffusion coefficient actually decreases with its charge density, and for highly charged polymers the knot's position appears frozen.Comment: Revtex4, 9 pages, 9 eps figure

    Two-Dimensional Polymers with Random Short-Range Interactions

    Full text link
    We use complete enumeration and Monte Carlo techniques to study two-dimensional self-avoiding polymer chains with quenched ``charges'' ±1\pm 1. The interaction of charges at neighboring lattice sites is described by qiqjq_i q_j. We find that a polymer undergoes a collapse transition at a temperature TθT_{\theta}, which decreases with increasing imbalance between charges. At the transition point, the dependence of the radius of gyration of the polymer on the number of monomers is characterized by an exponent νθ=0.60±0.02\nu_{\theta} = 0.60 \pm 0.02, which is slightly larger than the similar exponent for homopolymers. We find no evidence of freezing at low temperatures.Comment: 4 two-column pages, 6 eps figures, RevTex, Submitted to Phys. Rev.

    Folding transitions of the triangular lattice with defects

    Get PDF
    A recently introduced model describing the folding of the triangular lattice is generalized allowing for defects in the lattice and written as an Ising model with nearest-neighbor and plaquette interactions on the honeycomb lattice. Its phase diagram is determined in the hexagon approximation of the cluster variation method and the crossover from the pure Ising to the pure folding model is investigated, obtaining a quite rich structure with several multicritical points. Our results are in very good agreement with the available exact ones and extend a previous transfer matrix study.Comment: 16 pages, latex, 5 postscript figure

    A Census Of Highly Symmetric Combinatorial Designs

    Full text link
    As a consequence of the classification of the finite simple groups, it has been possible in recent years to characterize Steiner t-designs, that is t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong symmetry properties. However, despite the finite simple group classification, for Steiner t-designs with t > 2 most of these characterizations have remained longstanding challenging problems. Especially, the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of particular interest and has been open for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to 1965). The present paper continues the author's work [20, 21, 22] of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a complete classification of all flag-transitive Steiner 5-designs and prove furthermore that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the classification of the finite 3-homogeneous permutation groups. Moreover, we survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics
    corecore