427 research outputs found

    Clarifying Some Remaining Questions in the Anomaly Puzzle

    Full text link
    We discuss several points that may help to clarify some questions that remain about the anomaly puzzle in supersymmetric theories. In particular, we consider a general N=1 supersymmetric Yang-Mills theory. The anomaly puzzle concerns the question of whether there is a consistent way to put the R-current and the stress tensor in a single supercurrent, even though in the classical theory they are in the same supermultiplet. As is well known, the classically conserved supercurrent bifurcates into two supercurrents having different anomalies in the quantum regime. The most interesting result we obtain is an explicit expression for the lowest component of one of the two supercurrents in 4-dimensional spacetime, namely the supercurrent that has the energy-momentum tensor as one of its components. This expression for the lowest component is an energy-dependent linear combination of two chiral currents, which itself does not correspond to a classically conserved chiral current. The lowest component of the other supercurrent, namely, the R-current, satisfies the Adler-Bardeen theorem. The lowest component of the first supercurrent has an anomaly that we show is consistent with the anomaly of the trace of the energy-momentum tensor. Therefore, we conclude that there is no consistent way to put the R-current and the stress tensor in a single supercurrent in the quantized theory. We also discuss and try to clarify some technical points in the derivations of the two-supercurrents in the literature. These latter points concern the significance of infrared contributions to the NSVZ beta-function and the role of the equations of motion in deriving the two supercurrents.Comment: 22 pages, no figure. v2: minor changes. v3: sections re-organized. new subsections (IVA, IVB) added. references adde

    Cervicovaginal mucus barrier properties during pregnancy are impacted by the vaginal microbiome

    Get PDF
    IntroductionMucus in the female reproductive tract acts as a barrier that traps and eliminates pathogens and foreign particles via steric and adhesive interactions. During pregnancy, mucus protects the uterine environment from ascension of pathogens and bacteria from the vagina into the uterus, a potential contributor to intrauterine inflammation and preterm birth. As recent work has demonstrated the benefit of vaginal drug delivery in treating women’s health indications, we sought to define the barrier properties of human cervicovaginal mucus (CVM) during pregnancy to inform the design of vaginally delivered therapeutics during pregnancy.MethodsCVM samples were self-collected by pregnant participants over the course of pregnancy, and barrier properties were quantified using multiple particle tracking. 16S rRNA gene sequencing was performed to analyze the composition of the vaginal microbiome.ResultsParticipant demographics differed between term delivery and preterm delivery cohorts, with Black or African American participants being significantly more likely to delivery prematurely. We observed that vaginal microbiota is most predictive of CVM barrier properties and of timing of parturition. Lactobacillus crispatus dominated CVM samples showed increased barrier properties compared to polymicrobial CVM samples.DiscussionThis work informs our understanding of how infections occur during pregnancy, and directs the engineering of targeted drug treatments for indications during pregnancy

    On the Trace Anomaly and the Anomaly Puzzle in N=1 Pure Yang-Mills

    Full text link
    The trace anomaly of the energy-momentum tensor is usually quoted in the form which is proportional to the beta function of the theory. However, there are in general many definitions of gauge couplings depending on renormalization schemes, and hence many beta functions. In particular, N=1 supersymmetric pure Yang-Mills has the holomorphic gauge coupling whose beta function is one-loop exact, and the canonical gauge coupling whose beta function is given by the Novikov-Shifman-Vainshtein-Zakharov beta function. In this paper, we study which beta function should appear in the trace anomaly in N=1 pure Yang-Mills. We calculate the trace anomaly by employing the N=4 regularization of N=1 pure Yang-Mills. It is shown that the trace anomaly is given by one-loop exact form if the composite operator appearing in the trace anomaly is renormalized in a preferred way. This result gives the simplest resolution to the anomaly puzzle in N=1 pure Yang-Mills. The most important point is to examine in which scheme the quantum action principle is valid, which is crucial in the derivation of the trace anomaly.Comment: 25 pages, 1 figure; v2:slight correction in sec.5, minor addition in appendi

    I Rest My Case! The Possibilities and Limitations of Blockchain-Based IP Protection

    Get PDF
    We have identified, mapped and discussed existing research on Blockchain-based solutions for intellectual property (IP) protection, an investigation that emerged from a case in antibody production for scientific and medical applications. To that end, we have performed a systematic literature review and created an instrument that classifies the contributions according to the materiality of the object they protect (from immaterial to physical), the type of protection (authorship notarization or prevention of illegal use) and the type of research (conceptual or empirical). Our results can be used to understand which avenues to pursue in the effort to create a new generation of more effective technology-assisted IP protection systems, a priority for 152 signatory countries of the patent cooperation treaty

    Evaluating the Effects of Cutoffs and Treatment of Long-range Electrostatics in Protein Folding Simulations

    Get PDF
    The use of molecular dynamics simulations to provide atomic-level descriptions of biological processes tends to be computationally demanding, and a number of approximations are thus commonly employed to improve computational efficiency. In the past, the effect of these approximations on macromolecular structure and stability has been evaluated mostly through quantitative studies of small-molecule systems or qualitative observations of short-timescale simulations of biological macromolecules. Here we present a quantitative evaluation of two commonly employed approximations, using a test system that has been the subject of a number of previous protein folding studies–the villin headpiece. In particular, we examined the effect of (i) the use of a cutoff-based force-shifting technique rather than an Ewald summation for the treatment of electrostatic interactions, and (ii) the length of the cutoff used to determine how many pairwise interactions are included in the calculation of both electrostatic and van der Waals forces. Our results show that the free energy of folding is relatively insensitive to the choice of cutoff beyond 9 Å, and to whether an Ewald method is used to account for long-range electrostatic interactions. In contrast, we find that the structural properties of the unfolded state depend more strongly on the two approximations examined here

    Cervicovaginal mucus barrier properties during pregnancy are impacted by the vaginal microbiome

    Get PDF
    Introduction Mucus in the female reproductive tract acts as a barrier that traps and eliminates pathogens and foreign particles via steric and adhesive interactions. During pregnancy, mucus protects the uterine environment from ascension of pathogens and bacteria from the vagina into the uterus, a potential contributor to intrauterine inflammation and preterm birth. As recent work has demonstrated the benefit of vaginal drug delivery in treating women’s health indications, we sought to define the barrier properties of human cervicovaginal mucus (CVM) during pregnancy to inform the design of vaginally delivered therapeutics during pregnancy. Methods CVM samples were self-collected by pregnant participants over the course of pregnancy, and barrier properties were quantified using multiple particle tracking. 16S rRNA gene sequencing was performed to analyze the composition of the vaginal microbiome. Results Participant demographics differed between term delivery and preterm delivery cohorts, with Black or African American participants being significantly more likely to delivery prematurely. We observed that vaginal microbiota is most predictive of CVM barrier properties and of timing of parturition. Lactobacillus crispatus dominated CVM samples showed increased barrier properties compared to polymicrobial CVM samples. Discussion This work informs our understanding of how infections occur during pregnancy, and directs the engineering of targeted drug treatments for indications during pregnancy

    Ecosystem-based management for military training, biodiversity, carbon storage and climate resiliency on a complex coastal land/water-scape

    Get PDF
    The Defense Coastal/Estuarine Research Program (DCERP) was a 10-year multi-investigator project funded by the Department of Defense to improve understanding of ecosystem processes and their interactions with natural and anthropogenic stressors at the Marine Corps Base Camp Lejeune (MCBCL) located in coastal North Carolina. The project was aimed at facilitating ecosystem-based management (EBM) at the MCBCL and other coastal military installations. Because of its scope, interdisciplinary character, and duration, DCERP embodied many of the opportunities and challenges associated with EBM, including the need for explicit goals, system models, long-term perspectives, systems complexity, change inevitability, consideration of humans as ecosystem components, and program adaptability and accountability. We describe key elements of this program, its contributions to coastal EBM, and its relevance as an exemplar of EBM
    • …
    corecore