107 research outputs found

    Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope

    Get PDF
    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths (1-3 Earth radii). Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars, that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15-micron bands to measure CO2 absorption in superEarths, as well as JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2 absorption at 4.3-microns. We project that TESS will discover about eight nearby habitable transiting superEarths. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, CO2) in one to four nearby habitable TESS superEarths.Comment: accepted for PASP; added discussion and figure for habitable planets; abridged Abstrac

    Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    Get PDF
    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detector

    The Relationship between the Optical Depth of the 9.7 micron Silicate Absorption Feature and Infrared Differential Extinction in Dense Clouds

    Get PDF
    We have examined the relationship between the optical depth of the 9.7 micron silicate absorption feature (tau_9.7) and the near-infrared color excess, E(J-Ks) in the Serpens, Taurus, IC 5146, Chameleon I, Barnard 59, and Barnard 68 dense clouds/cores. Our data set, based largely on Spitzer IRS spectra, spans E(J-Ks)=0.3 to 10 mag (corresponding to visual extinction between about 2 and 60 mag.). All lines of sight show the 9.7 micron silicate feature. Unlike in the diffuse ISM where a tight linear correlation between the 9.7 micron silicate feature optical depth and the extinction (Av) is observed, we find that the silicate feature in dense clouds does not show a monotonic increase with extinction. Thus, in dense clouds, tau_9.7 is not a good measure of total dust column density. With few exceptions, the measured tau_9.7 values fall well below the diffuse ISM correlation line for E(J-Ks) > 2 mag (Av >12 mag). Grain growth via coagulation is a likely cause of this effect.Comment: 11 pages including 2 figures, 1 table. Accepted for publication in ApJ Letters, 23 July 200

    Fifty Years of Exploring Pluto: from Telescopes to the New Horizons Mission

    Get PDF
    Pluto was discovered in 1930 at Lowell Observatory in the belated resumption of a wide-field photographic search originally be-gun at Percival Lowells direction prior to his death in 1916. Photometry in the 1950s established the rotation period of 6.4 hours and a color redder than the Sun, but the mass, density, size and albedo were unknown. Near-infrared photometry in 1976 indicated the presence of CH4 frost, suggestive of a relatively high surface albedo and a diameter comparable to the Moon. The large satellite Charon was discovered in 1978, followed by an epoch of mutual transits and occultations of Pluto and Charon from 1985 to 1990, as viewed from Earth. These events resulted in reliable sizes and masses of the two bodies, as well as the orbit of Charon. The mutual events also demonstrated that Pluto and Charon are in locked synchronous rotation and revolution, a configuration unique among the planets. The atmosphere of Pluto was discovered in 1988 from a stellar occultation observed from the Kuiper Airborne Observatory and ground stations, with indications of a haze layer (or a temperature inversion) in the lower atmosphere. Sub-sequent stellar occultations showed that the extent of the atmosphere is variable on a timescale of a few years. The spectroscopic detection of N2 and CO ice in 1993 demonstrated that the atmosphere must be primarily composed of N2, with CH4 and CO as minor components; the spectroscopic detection of gaseous CH4 was reported in 1994

    NIRVSS Aboard CLPS

    Get PDF
    NASA initiated the Commercial Lunar Payload Services (CLPS) program for flights to the lunar surface. Astrobotic was awarded a NASA contract to accommodate NASA payloads onto their Peregrine lander Astrobotic Mission One (ABM-1). ABM-1 is scheduled to land near Lacus Mortis, 44N 25E, in 2021. The Near-InfraRed Volatile Spectrometer System (NIRVSS) has evolved over time and was chosen as a NASA payload for ABM-1 and the flight model is scheduled to be delivered to Astrobotic at the end of March 2020
    • …
    corecore