102 research outputs found

    Intrinsic point defects and volume swelling in ZrSiO4 under irradiation

    Full text link
    The effects of high concentration of point defects in crystalline ZrSiO4 as originated by exposure to radiation, have been simulated using first principles density functional calculations. Structural relaxation and vibrational studies were performed for a catalogue of intrinsic point defects, with different charge states and concentrations. The experimental evidence of a large anisotropic volume swelling in natural and artificially irradiated samples is used to select the subset of defects that give similar lattice swelling for the concentrations studied, namely interstitials of O and Si, and the anti-site Zr(Si), Calculated vibrational spectra for the interstitials show additional evidence for the presence of high concentrations of some of these defects in irradiated zircon.Comment: 9 pages, 7 (color) figure

    Prediction of Irradiation Spectrum Effects in Pyrochlores

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11837-014-1158-xThe formation energy of cation antisites in pyrochlores (A2B2O7) has been correlated with the susceptibility to amorphize under irradiation, and thus, density functional theory calculations of antisite energetics can provide insights into the radiation tolerance of pyrochlores. Here, we show that the formation energy of antisite pairs in titanate pyrochlores, as opposed to other families of pyrochlores (B = Zr, Hf, or Sn), exhibits a strong dependence on the separation distance between the antisites. Classical molecular dynamics simulations of collision cascades in Er2Ti2O7 show that the average separation of antisite pairs is a function of the primary knock-on atom energy that creates the collision cascades. Together, these results suggest that the radiation tolerance of titanate pyrochlores may be sensitive to the irradiation conditions and might be controllable via the appropriate selection of ion beam parameters
    corecore