28 research outputs found

    Characterization of an embedded RF-MEMS switch

    Get PDF
    An RF-MEMS capacitive switch for mm-wave integrated circuits, embedded in the BEOL of 0.25μm BiCMOS process, has been characterized. First, a mechanical model based on Finite-Element-Method (FEM) was developed by taking the residual stress of the thin film membrane into account. The pull-in voltage and the capacitance values obtained with the mechanical model agree very well with the measured values. Moreover, S-parameters were extracted using Electromagnetic (EM) solver. The data observed in this way also agree well with the experimental ones measured up to 110GHz. The developed RF model was applied to a transmit/receive (T/R) antenna switch design. The results proved the feasibility of using the FEM model in circuit simulations for the development of RF-MEMS switch embedded, single-chip multi-band RF ICs

    Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe

    Get PDF

    Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems

    No full text
    The widespread use of forest litter as annual bedding in central Europe for many, centuries gave rise to the first litter manipulation studies, and their results demonstrated that litter and its decomposition are a vital part or ecosystem function. Litter plays two major roles in forest ecosystems: firstly, litterfall is all inherent part of nutrient and carbon cycling, and secondly, litter forms a protective layer oil the soil surface that also regulates microclimatic conditions. By reviewing 152 years of litter manipulation experiments, I show that the effects or manipulating litter stem from changes in one, or both, of these two functions, and interactions between the variables influenced by the accumulation of litter can result in feedback mechanisms that may intensify treatment effects or mask responses, making the interpretation of results difficult. Long-term litter removal increased soil bulk density, overland flow, erosion, and temperature fluctuations and upset the soil water balance, causing lower soil water content during dry periods. Soil pH increased or decreased in response to manipulation treatments depending on forest type and initial soil pH, but unclear why there was no uniform response. Long-term litter harvesting severely depleted the forests of nutrients. Decreases in the concentrations of available P, Ca, Mg, and K in the soil occurred after only three to five years. The decline in soil N occurred over longer periods of time, and the relative loss was greater in soils with high initial nitrogen concentration. Tree growth declined with long-term litter removal, probably due to lower nutrient availability. Litter manipulation also added or removed large amounts of carbon thereby affecting microbial communities and altering soil respiration rates. Litter manipulation experiments have shown that litter cover acts as a physical barrier to the shoot emergence of small-seeded species; further, the microclimate maintained by the litter layer may be Favourable to herbivores and pathogens and is important in determining later seedling survival and performance. Litter manipulation altered the competitive outcomes between tree seedlings and forbs, thereby influencing species composition and diversity; changes in the species composition of understorey vegetation following treatments occurred rapidly. By decreasing substrate availability and altering the microclimate, litter removal changed fungal species composition and diversity and led to a decline in populations of soil fauna. However, litter addition did not provoke an corresponding increase in the abundance or diversity of fungi or soil fauna. Large-scale long-term studies are still needed in order to investigate the interactions between the many variables affected by litter, especially in tropical and boreal forests, which have received little attention. Litter manipulation treatments present an opportunity to assess the effects of increasing primary production in forest ecosystems; specific research aims include assessing the effect of changes in litter inputs on the carbon and nutrient cycles, decomposition processes, and the turnover of organic matter
    corecore