153 research outputs found

    Semi-regular masas of transfinite length

    Full text link
    In 1965 Tauer produced a countably infinite family of semi-regular masas in the hyperfinite II1\mathrm{II}_1 factor, no pair of which are conjugate by an automorphism. This was achieved by iterating the process of passing to the algebra generated by the normalisers and, for each nNn\in\mathbb N, finding masas for which this procedure terminates at the nn-th stage. Such masas are said to have length nn. In this paper we consider a transfinite version of this idea, giving rise to a notion of ordinal valued length. We show that all countable ordinals arise as lengths of semi-regular masas in the hyperfinite II1\mathrm{II}_1 factor. Furthermore, building on work of Jones and Popa, we obtain all possible combinations of regular inclusions of irreducible subfactors in the normalising tower.Comment: 14 page

    The Paulsen Problem, Continuous Operator Scaling, and Smoothed Analysis

    Full text link
    The Paulsen problem is a basic open problem in operator theory: Given vectors u1,,unRdu_1, \ldots, u_n \in \mathbb R^d that are ϵ\epsilon-nearly satisfying the Parseval's condition and the equal norm condition, is it close to a set of vectors v1,,vnRdv_1, \ldots, v_n \in \mathbb R^d that exactly satisfy the Parseval's condition and the equal norm condition? Given u1,,unu_1, \ldots, u_n, the squared distance (to the set of exact solutions) is defined as infvi=1nuivi22\inf_{v} \sum_{i=1}^n \| u_i - v_i \|_2^2 where the infimum is over the set of exact solutions. Previous results show that the squared distance of any ϵ\epsilon-nearly solution is at most O(poly(d,n,ϵ))O({\rm{poly}}(d,n,\epsilon)) and there are ϵ\epsilon-nearly solutions with squared distance at least Ω(dϵ)\Omega(d\epsilon). The fundamental open question is whether the squared distance can be independent of the number of vectors nn. We answer this question affirmatively by proving that the squared distance of any ϵ\epsilon-nearly solution is O(d13/2ϵ)O(d^{13/2} \epsilon). Our approach is based on a continuous version of the operator scaling algorithm and consists of two parts. First, we define a dynamical system based on operator scaling and use it to prove that the squared distance of any ϵ\epsilon-nearly solution is O(d2nϵ)O(d^2 n \epsilon). Then, we show that by randomly perturbing the input vectors, the dynamical system will converge faster and the squared distance of an ϵ\epsilon-nearly solution is O(d5/2ϵ)O(d^{5/2} \epsilon) when nn is large enough and ϵ\epsilon is small enough. To analyze the convergence of the dynamical system, we develop some new techniques in lower bounding the operator capacity, a concept introduced by Gurvits to analyze the operator scaling algorithm.Comment: Added Subsection 1.4; Incorporated comments and fixed typos; Minor changes in various place

    On stable finiteness of group rings

    No full text
    For an arbitrary field or division ring K and an arbitrary group G, stable finiteness of K[G] is equivalent to direct finiteness of K[G×H] for all finite groups H

    Exactness of the Fock space representation of the q-commutation relations

    Full text link
    We show that for all q in the interval (-1,1), the Fock representation of the q-commutation relations can be unitarily embedded into the Fock representation of the extended Cuntz algebra. In particular, this implies that the C*-algebra generated by the Fock representation of the q-commutation relations is exact. An immediate consequence is that the q-Gaussian von Neumann algebra is weakly exact for all q in the interval (-1,1).Comment: 20 page

    Isomorphisms of Cayley graphs of surface groups

    No full text
    A combinatorial proof is given for the fact that the Cayley graph of the fundamental group Γg of the closed, orientable surface of genus g ≥ 2 with respect to the usual generating set is isomorphic to the Cayley graph of a certain Coxeter group generated by 4g elements
    corecore