219 research outputs found

    Influence of the thermal history and composition on the melting/solidification process in Sn-Ag-Cu solders

    Get PDF
    Presented work shows the results of DSC measurement for six Sn based solders. The alloys Sn96Ag4, Sn99Cu1, Sn97Cu3, Sn96.5Ag3Cu0.5, Sn95.5Ag3.8Cu0.7 and Sn63Pb37 were studied in the temperature range from room temperature up to 400◦C. The transformation temperatures for melting as well as for solidification were influenced by the composition and thermal history of the alloys. The thermal history was altered by changing the maximum thermal cycle temperature and the heating/cooling rate. It is shown that the rate of solidification is far larger than that of the melting. The solidification rate is not influenced by neither the composition nor the thermal history of the material. Analysis of these results is presented

    Experimental implementation of the optimal linear-optical controlled phase gate

    Full text link
    We report on the first experimental realization of optimal linear-optical controlled phase gates for arbitrary phases. The realized scheme is entirely flexible in that the phase shift can be tuned to any given value. All such controlled phase gates are optimal in the sense that they operate at the maximum possible success probabilities that are achievable within the framework of any postselected linear-optical implementation. The quantum gate is implemented using bulk optical elements and polarization encoding of qubit states. We have experimentally explored the remarkable observation that the optimum success probability is not monotone in the phase.Comment: 4 pages, 5 figures, 1 tabl

    Symptom-severity-related brain connectivity alterations in functional movement disorders

    Get PDF
    Background Functional movement disorders, a common cause of neurological disabilities, can occur with heterogeneous motor manifestations including functional weakness. However, the underlying mechanisms related to brain function and connectivity are unknown. Objective To identify brain connectivity alterations related to functional weakness we assessed network centrality changes in a group of patients with heterogeneous motor manifestations using task-free functional MRI in combination with different network centrality approaches. Methods Task-free functional MRI was performed in 48 patients with heterogeneous motor manifestations including 28 patients showing functional weakness and 65 age- and sex-matched healthy controls. Functional connectivity differences were assessed using different network centrality approaches, i.e. global correlation, eigenvector centrality, and intrinsic connectivity. Motor symptom severity was assessed using The Simplified Functional Movement Disorders Rating Scale and correlated with network centrality. Results Comparing patients with and without functional weakness showed significant network centrality differences in the left temporoparietal junction and precuneus. Patients with functional weakness showed increased centrality in the same anatomical regions when comparing functional weakness with healthy controls. Moreover, in the same regions, patients with functional weakness showed a positive correlation between motor symptom severity and network centrality. This correlation was shown to be specific to functional weakness with an interaction analysis, confirming a significant difference between patients with and without functional weakness. Conclusions We identified the temporoparietal junction and precuneus as key regions involved in brain connectivity alterations related to functional weakness. We propose that both regions may be promising targets for phenotype-specific non-invasive brain stimulation

    Security Proof for Quantum Key Distribution Using Qudit Systems

    Full text link
    We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use dd-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with dd. The finite-key corrections are found to be almost insensitive to d20d\lesssim 20.Comment: 5 pages, 1 figure, version 3 corrects equations (9) and (11), and slightly modifies the figure to reflect the change to equation (11

    On single-photon quantum key distribution in the presence of loss

    Get PDF
    We investigate two-way and one-way single-photon quantum key distribution (QKD) protocols in the presence of loss introduced by the quantum channel. Our analysis is based on a simple precondition for secure QKD in each case. In particular, the legitimate users need to prove that there exists no separable state (in the case of two-way QKD), or that there exists no quantum state having a symmetric extension (one-way QKD), that is compatible with the available measurements results. We show that both criteria can be formulated as a convex optimisation problem known as a semidefinite program, which can be efficiently solved. Moreover, we prove that the solution to the dual optimisation corresponds to the evaluation of an optimal witness operator that belongs to the minimal verification set of them for the given two-way (or one-way) QKD protocol. A positive expectation value of this optimal witness operator states that no secret key can be distilled from the available measurements results. We apply such analysis to several well-known single-photon QKD protocols under losses.Comment: 14 pages, 6 figure

    Unambiguous state discrimination in quantum cryptography with weak coherent states

    Full text link
    The use of linearly independent signal states in realistic implementations of quantum key distribution (QKD) enables an eavesdropper to perform unambiguous state discrimination. We explore quantitatively the limits for secure QKD imposed by this fact taking into account that the receiver can monitor to some extend the photon number statistics of the signals even with todays standard detection schemes. We compare our attack to the beamsplitting attack and show that security against beamsplitting attack does not necessarily imply security against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of beamsplitting attac

    Upper bounds for the secure key rate of decoy state quantum key distribution

    Full text link
    The use of decoy states in quantum key distribution (QKD) has provided a method for substantially increasing the secret key rate and distance that can be covered by QKD protocols with practical signals. The security analysis of these schemes, however, leaves open the possibility that the development of better proof techniques, or better classical post-processing methods, might further improve their performance in realistic scenarios. In this paper, we derive upper bounds on the secure key rate for decoy state QKD. These bounds are based basically only on the classical correlations established by the legitimate users during the quantum communication phase of the protocol. The only assumption about the possible post-processing methods is that double click events are randomly assigned to single click events. Further we consider only secure key rates based on the uncalibrated device scenario which assigns imperfections such as detection inefficiency to the eavesdropper. Our analysis relies on two preconditions for secure two-way and one-way QKD: The legitimate users need to prove that there exists no separable state (in the case of two-way QKD), or that there exists no quantum state having a symmetric extension (one-way QKD), that is compatible with the available measurements results. Both criteria have been previously applied to evaluate single-photon implementations of QKD. Here we use them to investigate a realistic source of weak coherent pulses. The resulting upper bounds can be formulated as a convex optimization problem known as a semidefinite program which can be efficiently solved. For the standard four-state QKD protocol, they are quite close to known lower bounds, thus showing that there are clear limits to the further improvement of classical post-processing techniques in decoy state QKD.Comment: 10 pages, 3 figure

    Abnormal activity in the precuneus during time perception in Parkinson’s disease: An fMRI study

    Get PDF
    Background Parkinson's disease (PD) patients are deficient in time estimation. This deficit improves after dopamine (DA) treatment and it has been associated with decreased internal timekeeper speed, disruption of executive function and memory retrieval dysfunction. Methodology/Findings The aim of the present study was to explore the neurophysiologic correlates of this deficit. We performed functional magnetic resonance imaging on twelve PD patients while they were performing a time reproduction task (TRT). The TRT consisted of an encoding phase (during which visual stimuli of durations from 5s to 16.6s, varied at 8 levels were presented) and a reproduction phase (during which interval durations were reproduced by a button pressing). Patients were scanned twice, once while on their DA medication (ON condition) and once after medication withdrawal (OFF condition). Differences in Blood-Oxygenation-Level-Dependent (BOLD) signal in ON and OFF conditions were evaluated. The time course of activation in the brain areas with different BOLD signal was plotted. There were no significant differences in the behavioral results, but a trend toward overestimation of intervals ≤11.9s and underestimation of intervals ≥14.1s in the OFF condition (p<0.088). During the reproduction phase, higher activation in the precuneus was found in the ON condition (p<0.05 corrected). Time course was plotted separately for long (≥14.1s) and short (≤11.9s) intervals. Results showed that there was a significant difference only in long intervals, when activity gradually decreased in the OFF, but remained stable in the ON condition. This difference in precuneus activation was not found during random button presses in a control task. Conclusions/Significance Our results show that differences in precuneus activation during retrieval of a remembered duration may underlie some aspects of time perception deficit in PD patients. We suggest that DA medication may allow compensatory activation in the precuneus, which results in a more accurate retrieval of remembered interval duration

    Passive-scheme analysis for solving untrusted source problem in quantum key distribution

    Full text link
    As a practical method, the passive scheme is useful to monitor the photon statistics of an untrusted source in a "Plug & Play" quantum key distribution (QKD) system. In a passive scheme, three kinds of monitor mode can be adopted: average photon number (APN) monitor, photon number analyzer (PNA) and photon number distribution (PND) monitor. In this paper, the security analysis is rigorously given for APN monitor, while for PNA, the analysis including statistical fluctuation and random noise, is addressed with a confidence level. The results show that the PNA can achieve better performance than the APN monitor and can asymptotically approach the theoretical limit of the PND monitor. Also, the passive scheme with the PNA works efficiently when the signal-to-noise ratio (RSNR^{SN}) is not too low and so is highly applicable to solve the untrusted source problem in the QKD system.Comment: 8 pages, 6 figures, published versio
    corecore