7,435 research outputs found
New directions in InP solar cell research
Recent research efforts representing new directions in InP solar cell research are reviewed. These include heteroepitaxial growth on silicon and gallium arsenide substrates, V-grooved cells, large area high efficiency cells, and surface passivation. Improvements in heteroepitaxial cell efficiency are described together with processing of 19.1 percent, 4 sq cm cells. Recommendations are made for improvements in processing leading to increased efficiencies
GaAs homojunction solar cell development
The Lincoln Laboratory n(+)/p/p(+) GaAs shallow homojunction cell structure was successfully demonstrated on 2 by 2 cm GaAs substrates. Air mass zero efficiencies of the seven cells produced to date range from 13.6 to 15.6 percent. Current voltage (I-V) characteristics, spectral response, and measurements were made on all seven cells. Preliminary analysis of 1 MeV electron radiation damage data indicate excellent radiation resistance for these cells
Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)
The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are
studied by the ferromagnetic proximity polarization (FPP) effect and
magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with
respect to Fe3O4 film thickness, and the oscillations are large enough to
induce repeated sign reversals. We attribute the oscillatory behavior to
spin-polarized quantum well states forming in the Fe3O4 film. Quantum
confinement of the t2g states near the Fermi level provides an explanation for
the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let
Magnetic Moment Formation in Graphene Detected by Scattering of Pure Spin Currents
Hydrogen adatoms are shown to generate magnetic moments inside single layer
graphene. Spin transport measurements on graphene spin valves exhibit a dip in
the non-local spin signal as a function of applied magnetic field, which is due
to scattering (relaxation) of pure spin currents by exchange coupling to the
magnetic moments. Furthermore, Hanle spin precession measurements indicate the
presence of an exchange field generated by the magnetic moments. The entire
experiment including spin transport is performed in an ultrahigh vacuum
chamber, and the characteristic signatures of magnetic moment formation appear
only after hydrogen adatoms are introduced. Lattice vacancies also demonstrate
similar behavior indicating that the magnetic moment formation originates from
pz-orbital defects.Comment: accepted to Phys. Rev. Let
A double junction model of irradiated silicon pixel sensors for LHC
In this paper we discuss the measurement of charge collection in irradiated
silicon pixel sensors and the comparison with a detailed simulation. The
simulation implements a model of radiation damage by including two defect
levels with opposite charge states and trapping of charge carriers. The
modeling proves that a doubly peaked electric field generated by the two defect
levels is necessary to describe the data and excludes a description based on
acceptor defects uniformly distributed across the sensor bulk. In addition, the
dependence of trap concentrations upon fluence is established by comparing the
measured and simulated profiles at several fluences and bias voltages.Comment: Talk presented at the 10th European Symposium on Semiconductor
Detectors, June 12-16 2005, Wildbad Kreuth, Germany. 9 pages, 4 figure
Radiation damage and annealing in large area n+/p/p+ GaAs shallow homojunction solar cells
Annealing of radiation damage was observed for the first time in VPE-grown, 2- by 2-cm, n+/p/p+ GaAs shallow homojunction solar cells. Electrical performance of several cells was determined as a function of 1-MeV electron fluence in the range of 10 to the 13th power to 10 to the 15th power e-/sq cm and as a function of thermal annealing time at various temperatures. Degradation of normalized power output after a fluence of 10 to the 15th power 1-MeV electrons/sq cm ranged from a low of 24 to 31 percent of initial maximum power. Normalized short circuit current degradation was limited to the range from 10 to 19 percent of preirradiated values. Thermal annealing was carried out in a flowing nitrogen gas ambient, with annealing temperatures spanning the range from 125 to 200 C. Substantial recovery of short circuit current was observed at temperatures as low as 175 C. In one case improvement by as much as 10 percent of the postirradiated value was observed. The key features of these cells are their extremely thin emitter layers (approxmately 0.05 micrometers), the absence of any Al sub xGd sub 1-x As passivating window layer, and their fabrication by vapor phase epitaxy
Non-LTE Spectra of Accretion Disks Around Intermediate-Mass Black Holes
We have calculated the structures and the emergent spectra of stationary,
geometrically thin accretion disks around 100 and 1000 M_sun black holes in
both the Schwarzschild and extreme Kerr metrics. Equations of radiative
transfer, hydrostatic equilibrium, energy balance, ionization equilibrium, and
statistical equilibrium are solved simultaneously and consistently. The six
most astrophysically abundant elements (H, He, C, N, O, and Fe) are included,
as well as energy transfer by Comptonization. The observed spectrum as a
function of viewing angle is computed incorporating all general relativistic
effects. We find that, in contrast with the predictions of the commonly-used
multi-color disk (MCD) model, opacity associated with photoionization of heavy
elements can significantly alter the spectrum near its peak. These ionization
edges can create spectral breaks visible in the spectra of slowly-spinning
black holes viewed from almost all angles and in the spectra of
rapidly-spinning black holes seen approximately pole-on. For fixed mass and
accretion rate relative to Eddington, both the black hole spin and the viewing
angle can significantly shift the observed peak energy of the spectrum,
particularly for rapid spin viewed obliquely or edge-on. We present a detailed
test of the approximations made in various forms of the MCD model. Linear
limb-darkening is confirmed to be a reasonable approximation for the integrated
flux, but not for many specific frequencies of interest.Comment: 30 pages, 11 eps figures, accepted for publication in Ap
Effect of dislocations on properties of heteroepitaxial InP solar cells
The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells
- …