1,619 research outputs found

    Gauge/String-Gravity Duality and Froissart Bound

    Full text link
    The gauge/string-gravity duality correspondence opened renewed hope and possibility to address some of the fundamental and non-perturbative QCD problems in particle physics, such as hadron spectrum and Regge behavior of the scattering amplitude at high energies. One of the most fundamental and long-standing problem is the high energy behavior of total cross-sections. According to a series of exhaustive tests by the COMPETE group, (1). total cross-sections have a universal Heisenberg behavior in energy corresponding to the maximal energy behavior allowed by the Froissart bound, i.e., A+Bln2(s/s0)A + B ln^2 (s/s_0) with B∼0.32mbB \sim 0.32 mb and s0∼34.41GeV2s_0 \sim 34.41 GeV^2 for all reactions, and (2). the factorization relation among σpp,even,σγp,andσγγ\sigma_{pp, even}, \sigma_{\gamma p}, and \sigma_{\gamma \gamma} is well satisfied by experiments. I discuss the recent interesting application of the gauge/string-gravity duality of AdS/CFTAdS/CFT correspondence with a deformed background metric so as to break the conformal symmetry that can lead to the Heisenberg behavior of rising total cross-sections, and present some preliminary results on the high energy QCD from Planckian scattering in AdSAdS and black-hole production.Comment: 10 pages, Presented to the Coral Gables Conference 2003, Launching of BelleE\'poque in High Energy Physics and Cosmology, 17 - 21 December 2003, Fort Lauderdale, Florid

    Entropy in Black Hole Pair Production

    Get PDF
    Pair production of Reissner-Nordstrom black holes in a magnetic field can be described by a euclidean instanton. It is shown that the instanton amplitude contains an explicit factor of eA/4e^{A/4}, where AA is the area of the event horizon. This is consistent with the hypothesis that eA/4e^{A/4} measures the number of black hole states.Comment: 24 pages (harvmac l mode

    UV-Completion by Classicalization

    Full text link
    We suggest a novel approach to UV-completion of a class of non-renormalizable theories, according to which the high-energy scattering amplitudes get unitarized by production of extended classical objects (classicalons), playing a role analogous to black holes, in the case of non-gravitational theories. The key property of classicalization is the existence of a classicalizer field that couples to energy-momentum sources. Such localized sources are excited in high-energy scattering processes and lead to the formation of classicalons. Two kinds of natural classicalizers are Nambu-Goldstone bosons (or, equivalently, longitudinal polarizations of massive gauge fields) and scalars coupled to energy-momentum type sources. Classicalization has interesting phenomenological applications for the UV-completion of the Standard Model both with or without the Higgs. In the Higgless Standard Model the high-energy scattering amplitudes of longitudinal WW-bosons self-unitarize via classicalization, without the help of any new weakly-coupled physics. Alternatively, in the presence of a Higgs boson, classicalization could explain the stabilization of the hierarchy. In both scenarios the high-energy scatterings are dominated by the formation of classicalons, which subsequently decay into many particle states. The experimental signatures at the LHC are quite distinctive, with sharp differences in the two cases.Comment: 37 page

    Comments on information loss and remnants

    Full text link
    The information loss and remnant proposals for resolving the black hole information paradox are reconsidered. It is argued that in typical cases information loss implies energy loss, and thus can be thought of in terms of coupling to a spectrum of ``fictitious'' remnants. This suggests proposals for information loss that do not imply planckian energy fluctuations in the low energy world. However, if consistency of gravity prevents energy non-conservation, these remnants must then be considered to be real. In either case, the catastrophe corresponding to infinite pair production remains a potential problem. Using Reissner-Nordstrom black holes as a paradigm for a theory of remnants, it is argued that couplings in such a theory may give finite production despite an infinite spectrum. Evidence for this is found in analyzing the instanton for Schwinger production; fluctuations from the infinite number of states lead to a divergent stress tensor, spoiling the instanton calculation. Therefore naive arguements for infinite production fail.Comment: 30 pages (harvmac l mode) UCSBTH-93-35 (minor reference and typo corrections

    Strong gravitational lensing by braneworld black holes

    Full text link
    In this paper, we use the strong field limit approach to investigate the gravitational lensing properties of braneworld black holes. Applying this method to the supermassive black hole at the centre of our galaxy, the lensing observables for some candidate braneworld black hole metrics are compared with those for the standard Schwarzschild case. It is found that braneworld black holes could have significantly different observational signatures to the Schwarzschild black hole.Comment: 8 pages, 4 figures, RevTeX4; v2 reference added; v3 minor technical correctio

    No black hole information puzzle in a relational universe

    Get PDF
    The introduction of a relational time in quantum gravity naturally implies that pure quantum states evolve into mixed quantum states. We show, using a recently proposed concrete implementation, that the rate at which pure states naturally evolve into mixed ones is faster than that due to collapsing into a black hole that later evaporates. This is rather remarkable since the fundamental mechanism for decoherence is usually very weak. Therefore the ``black hole information puzzle'' is rendered de-facto unobservable.Comment: 4 pages, no figures, revte

    Black Holes and Massive Remnants

    Full text link
    This paper revisits the conundrum faced when one attempts to understand the dynamics of black hole formation and evaporation without abandoning unitary evolution. Previous efforts to resolve this puzzle assume that information escapes in corrections to the Hawking process, that an arbitrarily large amount of information is transmitted by a planckian energy or contained in a Planck-sized remnant, or that the information is lost to another universe. Each of these possibilities has serious difficulties. This paper considers another alternative: remnants that carry large amounts of information and whose size and mass depend on their information content. The existence of such objects is suggested by attempts to incorporate a Planck scale cutoff into physics. They would greatly alter the late stages of the evaporation process. The main drawback of this scenario is apparent acausal behavior behind the horizon.Comment: 16 pages + 3 Fig

    Composition profiling InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunnelling microscopy

    Get PDF
    This study compares cross-sectional scanning tunnelling microscopy (XSTM) and atom probe tomography (APT). We use epitaxially grown self-assembled InAs quantum dots (QDs) in GaAs as an exemplary material with which to compare these two nanostructural analysis techniques. We studied the composition of the wetting layer and the QDs, and performed quantitative comparisons of the indium concentration profiles measured by each method. We show that computational models of the wetting layer and the QDs, based on experimental data, are consistent with both analytical approaches. This establishes a link between the two techniques and shows their complimentary behaviour, an advantage which we exploit in order to highlight unique features of the examined QD material.Comment: Main article: 8 pages, 6 figures. Appendix: 3 pages, 5 figure

    Classicalization of Gravitons and Goldstones

    Get PDF
    We establish a close parallel between classicalization of gravitons and derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation in high energy scattering process represents classicalization with the classicalization radius given by Schwarzschild radius of center of mass energy, and with the precursor of black hole entropy being given by number of soft quanta composing this classical configuration. Such an entropy-equivalent is defined for scalar classicalons also and is responsible for exponential suppression of their decay into small number of final particles. This parallel works in both ways. For optimists that are willing to hypothesize that gravity may indeed self-unitarize at high energies via black hole formation, it illustrates that the Goldstones may not be much different in this respect, and they classicalize essentially by similar dynamics as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-hole-unitarization process and of the role of entropy in it, as it illustrates, that much more prosaic scalar theories essentially do the same. Finally, it illustrates that in both cases classicalization is the defining property for unitarization, and that it sets-in before one can talk about accompanying properties, such as entropy and thermality of static classicalons (black holes). These properties are by-products of classicalization, and their equivalents can be defined for non-gravitational cases of classicalization.Comment: 23 page

    Search For Hole Mediated Ferromagnetism In Cubic (Ga,Mn)N

    Full text link
    Results of magnetisation measurements on p-type zincblende-(Ga,Mn)N are reported. In addition to a small high temperature ferromagnetic signal, we detect ferromagnetic correlation among the remaining Mn ions, which we assign to the onset of hole-mediated ferromagnetism in (Ga,Mn)N.Comment: 2 pages, 1 figure, proc. ICPS 27, Flagstaff '0
    • …
    corecore