2,484 research outputs found

    Submitting to MedEdPORTAL: Do it right the first time

    Get PDF
    Presented as a Small Group/Roundtable Discussion at 2020 IUSM Education Day.Medical educators at Indiana University School of Medicine (IUSM) are encouraged to publish in MedEdPORTAL: The Journal of Teaching and Learning Resources. Published by the Association of American Medical Colleges (AAMC), MedEdPORTAL is a peer-reviewed, open-access journal for medical education scholarship. These publications contain complete curricula, including objectives, instructor guides, slides, and assessments, ready to be implemented in the classroom. When faculty members apply for promotion, MedEdPORTAL can demonstrate the quality of their work through peer-review, citation counts, and other usage reports. Despite submitting high quality learning modules, medical educators receive rejections from the MedEdPORTAL 62% of time. Reasons for rejection include insufficient educational context and assessment, mismatch of educational objectives and instructional content, and failure to build on existing curricula. Of immediately rejected submissions, 90% also have copyright issues. MedEdPORTAL is a member of the Open Access Scholarly Publishers Association (OASPA) and therefore has strict requirements for copyright and licensing images in the education materials. These requirements are difficult to navigate. For faculty who are not familiar with copyright and licensing, these barriers can be frustrating enough to deter them from submitting curricula. This workshop introduced MedEdPORTAL, described the submission process, and shared our strategies for putting together a successful submission. By the end of the workshop, participants were able to: • Identify curricula they have developed that would fit with the goals of MedEdPORTAL’s publishers • Use template to complete the Educational Summary Report (ESR) • Classify content as that which requires copyright permission, is in the public domain, or has a Creative Commons license • Navigate the process of manuscript submission and revisio

    Bayesian analysis of 210Pb dating

    Get PDF
    In many studies of environmental change of the past few centuries, 210Pb dating is used to obtain chronologies for sedimentary sequences. One of the most commonly used approaches to estimate the ages of depths in a sequence is to assume a constant rate of supply (CRS) or influx of `unsupported' 210Pb from the atmosphere, together with a constant or varying amount of `supported' 210Pb. Current 210Pb dating models do not use a proper statistical framework and thus provide poor estimates of errors. Here we develop a new model for 210Pb dating, where both ages and values of supported and unsupported 210Pb form part of the parameters. We apply our model to a case study from Canada as well as to some simulated examples. Our model can extend beyond the current CRS approach, deal with asymmetric errors and mix 210Pb with other types of dating, thus obtaining more robust, realistic and statistically better defined estimates.Comment: 22 Pages, 4 Figure

    Superconducting magnesium diboride films on Silicon with Tc0 about 24K grown via vacuum annealing from stoichiometric precursors

    Full text link
    Superconducting magnesium diboride films with Tc0 ~ 24 K and sharp transition \~ 1 K were successfully prepared on silicon substrates by pulsed laser deposition from a stoichiometric MgB2 target. Contrary to previous reports, anneals at 630 degree and a background of 2x10^(-4) torr Ar/4%H2 were performed without the requirement of Mg vapor or an Mg cap layer. This integration of superconducting MgB2 films on silicon may thus prove enabling in superconductor-semiconductor device applications. Images of surface morphology and cross-section profiles by scanning electron microscopy (SEM) show that the films have a uniform surface morphology and thickness. Energy dispersive spectroscopy (EDS) reveals these films were contaminated with oxygen, originating either from the growth environment or from sample exposure to air. The oxygen contamination may account for the low Tc for those in-situ annealed films, while the use of Si as the substrate does not result in a decrease in Tc as compared to other substrates.Comment: 5 pages, 4 figures, 15 references; due to file size limit, images were blure

    On narrowing coated conductor film: emergence of granularity-induced field hysteresis of transport critical current

    Full text link
    Critical current density Jc in polycrystalline or granular superconducting material is known to be hysteretic with applied field H due to the focusing of field within the boundary between adjacent grains. This is of concern in the so-called coated conductors wherein superconducting film is grown on a granular, but textured surface of a metal substrate. While previous work has mainly been on Jc determined using induced or magnetization currents, the present work utilizes transport current via an applied potential in strip geometry. It is observed that the effect is not as pronounced using transport current, probably due to a large difference in criterion voltage between the two types of measurements. However, when the films are narrowed by patterning into 200-, 100-, or 80-micron, the hysteresis is clearly seen, because of the forcing of percolation across higher-angle grain boundaries. This effect is compared for films grown on ion-beam-assisted-deposited (IBAD) YSZ substrate and those grown on rolling-assisted-biaxially-textures substrates (RABiTS) which have grains that are about ten times larger. The hysteresis is more pronounced for the latter, which is more likely to have a weak grain boundary spanning the width of the microbridge. This is also of concern to applications in which coated conductors will be striated in order to reduce of AC losses.Comment: text-only: 10 pages, plus 5 figures on 5 page

    Does Increased Adenoma Detection Reduce the Risk of Colorectal Cancer, and How Good Do We Need to Be?

    Get PDF
    Purpose of Review Colorectal cancer (CRC) is largely preventable with colonoscopy and other screening modalities. However, the effectiveness of screening and surveillance depends on the quality of the colonoscopy exam. Adenoma detection rate (ADR) is the best-validated metric by which we measure individual physicians’ performance. Recent Findings Recent evidence suggests that ADR benchmarks may be inappropriately low. There is proof that improving ADR leads to significant reductions in post-colonoscopy CRC (PCCRC). Two studies have demonstrated that when a colonoscopy is performed by physicians with higher ADRs, patients are less likely to have advanced adenomas on surveillance and less likely to develop or die from PCCRC. Finally, there is at least some evidence that higher ADRs do not lead to more cumulative surveillance exams. Summary The ADR is a useful outcome measure that can provide individual endoscopists and their patients with information about the likelihood of developing PCCRC. To achieve the lowest possible PCCRC rate, we should be striving for higher ADRs. While strategies and innovations may help a bit in improving ADRs, our efforts should focus on ensuring a complete mucosal exam for each patient. Behavioral psychology theories may provide useful frameworks for studying motivating factors that drive a careful exam
    • …
    corecore