1,713 research outputs found
"Big" Divisor D3/D7 Swiss Cheese Phenomenology
We review progress made over the past couple of years in the field of Swiss
Cheese Phenomenology involving a mobile space-time filling D3-brane and
stack(s) of fluxed D7-branes wrapping the "big" (as opposed to the "small")
divisor in (the orientifold of a) Swiss-Cheese Calabi-Yau. The topics reviewed
include reconciliation of large volume cosmology and phenomenology, evaluation
of soft supersymmetry breaking parameters, one-loop RG-flow equations'
solutions for scalar masses, obtaining fermionic (possibly first two
generations' quarks/leptons) mass scales in the O(MeV-GeV)-regime as well as
(first two generations') neutrino masses (and their one-loop RG flow) of around
an eV. The heavy sparticles and the light fermions indicate the possibility of
"split SUSY" large volume scenario.Comment: Invited review for MPLA, 14 pages, LaTe
LARGE Volume String Compactifications at Finite Temperature
We present a detailed study of the finite-temperature behaviour of the LARGE
Volume type IIB flux compactifications. We show that certain moduli can
thermalise at high temperatures. Despite that, their contribution to the
finite-temperature effective potential is always negligible and the latter has
a runaway behaviour. We compute the maximal temperature , above which
the internal space decompactifies, as well as the temperature , that is
reached after the decay of the heaviest moduli. The natural constraint
implies a lower bound on the allowed values of the internal
volume . We find that this restriction rules out a significant
range of values corresponding to smaller volumes of the order , which lead to standard GUT theories. Instead, the bound favours
values of the order , which lead to TeV scale
SUSY desirable for solving the hierarchy problem. Moreover, our result favours
low-energy inflationary scenarios with density perturbations generated by a
field, which is not the inflaton. In such a scenario, one could achieve both
inflation and TeV-scale SUSY, although gravity waves would not be observable.
Finally, we pose a two-fold challenge for the solution of the cosmological
moduli problem. First, we show that the heavy moduli decay before they can
begin to dominate the energy density of the Universe. Hence they are not able
to dilute any unwanted relics. And second, we argue that, in order to obtain
thermal inflation in the closed string moduli sector, one needs to go beyond
the present EFT description.Comment: 54 pages + appendix, 5 figures; v2: minor corrections, references and
footnotes added, version published on JCA
Sparticle Spectra and LHC Signatures for Large Volume String Compactifications
We study the supersymmetric particle spectra and LHC collider observables for
the large-volume string models with a fundamental scale of 10^{11} GeV that
arise in moduli-fixed string compactifications with branes and fluxes. The
presence of magnetic fluxes on the brane world volume, required for chirality,
perturb the soft terms away from those previously computed in the dilute-flux
limit. We use the difference in high-scale gauge couplings to estimate the
magnitude of this perturbation and study the potential effects of the magnetic
fluxes by generating many random spectra with the soft terms perturbed around
the dilute flux limit. Even with a 40% variation in the high-scale soft terms
the low-energy spectra take a clear and predictive form. The resulting spectra
are broadly similar to those arising on the SPS1a slope, but more degenerate.
In their minimal version the models predict the ratios of gaugino masses to be
M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage
mediation. Among the scalars, the squarks tend to be lighter and the sleptons
heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC
data for the random spectra in order to study the range of collider
phenomenology that can occur. We perform a detailed mass reconstruction on one
example large-volume string model spectrum. 100 fb^{-1} of integrated
luminosity is sufficient to discriminate the model from mSUGRA and aspects of
the sparticle spectrum can be accurately reconstructed.Comment: 42 pages, 21 figures. Added references and discussion for section 3.
Slight changes in the tex
Towards Realistic String Vacua From Branes At Singularities
We report on progress towards constructing string models incorporating both
realistic D-brane matter content and moduli stabilisation with dynamical
low-scale supersymmetry breaking. The general framework is that of local
D-brane models embedded into the LARGE volume approach to moduli stabilisation.
We review quiver theories on del Pezzo () singularities including
both D3 and D7 branes. We provide supersymmetric examples with three
quark/lepton families and the gauge symmetries of the Standard, Left-Right
Symmetric, Pati-Salam and Trinification models, without unwanted chiral
exotics. We describe how the singularity structure leads to family symmetries
governing the Yukawa couplings which may give mass hierarchies among the
different generations. We outline how these models can be embedded into compact
Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state
the minimal conditions for this to be possible. We study the general structure
of soft supersymmetry breaking. At the singularity all leading order
contributions to the soft terms (both gravity- and anomaly-mediation) vanish.
We enumerate subleading contributions and estimate their magnitude. We also
describe model-independent physical implications of this scenario. These
include the masses of anomalous and non-anomalous U(1)'s and the generic
existence of a new hyperweak force under which leptons and/or quarks could be
charged. We propose that such a gauge boson could be responsible for the ghost
muon anomaly recently found at the Tevatron's CDF detector.Comment: 40 pages, 10 figure
Constraints on LVS Compactifications of IIB String Theory
We argue that once all theoretical and phenomenological constraints are
imposed on the different versions of the Large Volume Scenario (LVS)
compactifications of type IIB string theory, one particular version is favored.
This is essentially a sequestered one in which the soft terms are generated by
Weyl anomaly and RG running effects. We also show that arguments questioning
sequestering in LVS models are not relevant in this case.Comment: 14 pages, additional discussion of D7 brane case and mSUGRA,
reference adde
Neutrino Masses, Baryon Asymmetry, Dark Matter and the Moduli Problem : A Complete Framework
Recent developments in string theory have led to "realistic" string
compactifications which lead to moduli stabilization while generating a
hierarchy between the Electroweak and Planck scales at the same time. However,
this seems to suggest a rethink of our standard notions of cosmological
evolution after the end of inflation and before the beginning of BBN. We argue
that within classes of realistic string compactifications, there generically
exists a light modulus with a mass comparable to that of the gravitino which
generates a large late-time entropy when it decays. Therefore, all known
mechanisms of generating the baryon asymmetry of the Universe in the literature
have to take this fact into account. In this work, we find that it is still
possible to naturally generate the observed baryon asymmetry of the Universe as
well as light left-handed neutrino masses from a period of Affleck-Dine(AD)
leptogenesis shortly after the end of inflation, in classes of realistic string
constructions with a minimal extension of the MSSM below the unification scale
(consisting only of right-handed neutrinos) and satisfying certain microscopic
criteria described in the text. The consequences are as follows. The lightest
left-handed neutrino is required to be virtually massless. The moduli
(gravitino) problem can be naturally solved in this framework both within
gravity and gauge mediation. The observed upper bound on the relic abundance
constrains the moduli-matter and moduli-gravitino couplings since the DM is
produced non-thermally within this framework. Finally, although not a definite
prediction, the framework naturally allows a light right-handed neutrino and
sneutrinos around the electroweak scale which could have important implications
for DM as well as the LHC.Comment: 41 pages, no figures, journal version adde
Dark Radiation and Dark Matter in Large Volume Compactifications
We argue that dark radiation is naturally generated from the decay of the
overall volume modulus in the LARGE volume scenario. We consider both
sequestered and non-sequestered cases, and find that the axionic superpartner
of the modulus is produced by the modulus decay and it can account for the dark
radiation suggested by observations, while the modulus decay through the
Giudice-Masiero term gives the dominant contribution to the total decay rate.
In the sequestered case, the lightest supersymmetric particles produced by the
modulus decay can naturally account for the observed dark matter density. In
the non-sequestered case, on the other hand, the supersymmetric particles are
not produced by the modulus decay, since the soft masses are of order the heavy
gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE
Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation
We study the influence of anomalous U(1) symmetries and their associated
D-terms on the vacuum structure of global field theories once they are coupled
to N=1 supergravity and in the context of string compactifications with moduli
stabilisation. In particular, we focus on a IIB string motivated construction
of the ISS scenario and examine the influence of one additional U(1) symmetry
on the vacuum structure. We point out that in the simplest one-Kahler modulus
compactification, the original ISS vacuum gets generically destabilised by a
runaway behaviour of the potential in the modulus direction. In more general
compactifications with several Kahler moduli, we find a novel realisation of
the LARGE volume scenario with D-term uplifting to de Sitter space and both
D-term and F-term supersymmetry breaking. The structure of soft supersymmetry
breaking terms is determined in the preferred scenario where the standard model
cycle is not stabilised non-perturbatively and found to be flavour universal.
Our scenario also provides a purely supersymmetric realisation of Kahler moduli
(blow-up and fibre) inflation, with similar observational properties as the
original proposals but without the need to include an extra (non-SUSY)
uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction
SUSY Breaking in Local String/F-Theory Models
We investigate bulk moduli stabilisation and supersymmetry breaking in local
string/F-theory models where the Standard Model is supported on a del Pezzo
surface or singularity. Computing the gravity mediated soft terms on the
Standard Model brane induced by bulk supersymmetry breaking in the LARGE volume
scenario, we explicitly find suppressions by M_s/M_P ~ V^{-1/2} compared to
M_{3/2}. This gives rise to several phenomenological scenarios, depending on
the strength of perturbative corrections to the effective action and the source
of de Sitter lifting, in which the soft terms are suppressed by at least
M_P/V^{3/2} and may be as small as M_P/V^2. Since the gravitino mass is of
order M_{3/2} ~ M_P/V, for TeV soft terms all these scenarios give a very heavy
gravitino (M_{3/2} >= 10^8 GeV) and generically the lightest moduli field is
also heavy enough (m >= 10 TeV) to avoid the cosmological moduli problem. For
TeV soft terms, these scenarios predict a minimal value of the volume to be V ~
10^{6-7} in string units, which would give a unification scale of order M_{GUT}
~ M_s V^{1/6} ~ 10^{16} GeV. The strong suppression of gravity mediated soft
terms could also possibly allow a scenario of dominant gauge mediation in the
visible sector but with a very heavy gravitino M_{3/2} > 1 TeV
- …