1,713 research outputs found

    "Big" Divisor D3/D7 Swiss Cheese Phenomenology

    Full text link
    We review progress made over the past couple of years in the field of Swiss Cheese Phenomenology involving a mobile space-time filling D3-brane and stack(s) of fluxed D7-branes wrapping the "big" (as opposed to the "small") divisor in (the orientifold of a) Swiss-Cheese Calabi-Yau. The topics reviewed include reconciliation of large volume cosmology and phenomenology, evaluation of soft supersymmetry breaking parameters, one-loop RG-flow equations' solutions for scalar masses, obtaining fermionic (possibly first two generations' quarks/leptons) mass scales in the O(MeV-GeV)-regime as well as (first two generations') neutrino masses (and their one-loop RG flow) of around an eV. The heavy sparticles and the light fermions indicate the possibility of "split SUSY" large volume scenario.Comment: Invited review for MPLA, 14 pages, LaTe

    LARGE Volume String Compactifications at Finite Temperature

    Full text link
    We present a detailed study of the finite-temperature behaviour of the LARGE Volume type IIB flux compactifications. We show that certain moduli can thermalise at high temperatures. Despite that, their contribution to the finite-temperature effective potential is always negligible and the latter has a runaway behaviour. We compute the maximal temperature TmaxT_{max}, above which the internal space decompactifies, as well as the temperature TT_*, that is reached after the decay of the heaviest moduli. The natural constraint T<TmaxT_*<T_{max} implies a lower bound on the allowed values of the internal volume V\mathcal{V}. We find that this restriction rules out a significant range of values corresponding to smaller volumes of the order V104ls6\mathcal{V}\sim 10^{4}l_s^6, which lead to standard GUT theories. Instead, the bound favours values of the order V1015ls6\mathcal{V}\sim 10^{15}l_s^6, which lead to TeV scale SUSY desirable for solving the hierarchy problem. Moreover, our result favours low-energy inflationary scenarios with density perturbations generated by a field, which is not the inflaton. In such a scenario, one could achieve both inflation and TeV-scale SUSY, although gravity waves would not be observable. Finally, we pose a two-fold challenge for the solution of the cosmological moduli problem. First, we show that the heavy moduli decay before they can begin to dominate the energy density of the Universe. Hence they are not able to dilute any unwanted relics. And second, we argue that, in order to obtain thermal inflation in the closed string moduli sector, one needs to go beyond the present EFT description.Comment: 54 pages + appendix, 5 figures; v2: minor corrections, references and footnotes added, version published on JCA

    Sparticle Spectra and LHC Signatures for Large Volume String Compactifications

    Full text link
    We study the supersymmetric particle spectra and LHC collider observables for the large-volume string models with a fundamental scale of 10^{11} GeV that arise in moduli-fixed string compactifications with branes and fluxes. The presence of magnetic fluxes on the brane world volume, required for chirality, perturb the soft terms away from those previously computed in the dilute-flux limit. We use the difference in high-scale gauge couplings to estimate the magnitude of this perturbation and study the potential effects of the magnetic fluxes by generating many random spectra with the soft terms perturbed around the dilute flux limit. Even with a 40% variation in the high-scale soft terms the low-energy spectra take a clear and predictive form. The resulting spectra are broadly similar to those arising on the SPS1a slope, but more degenerate. In their minimal version the models predict the ratios of gaugino masses to be M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage mediation. Among the scalars, the squarks tend to be lighter and the sleptons heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC data for the random spectra in order to study the range of collider phenomenology that can occur. We perform a detailed mass reconstruction on one example large-volume string model spectrum. 100 fb^{-1} of integrated luminosity is sufficient to discriminate the model from mSUGRA and aspects of the sparticle spectrum can be accurately reconstructed.Comment: 42 pages, 21 figures. Added references and discussion for section 3. Slight changes in the tex

    Towards Realistic String Vacua From Branes At Singularities

    Get PDF
    We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo nn (dPndP_n) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.Comment: 40 pages, 10 figure

    Constraints on LVS Compactifications of IIB String Theory

    Full text link
    We argue that once all theoretical and phenomenological constraints are imposed on the different versions of the Large Volume Scenario (LVS) compactifications of type IIB string theory, one particular version is favored. This is essentially a sequestered one in which the soft terms are generated by Weyl anomaly and RG running effects. We also show that arguments questioning sequestering in LVS models are not relevant in this case.Comment: 14 pages, additional discussion of D7 brane case and mSUGRA, reference adde

    Neutrino Masses, Baryon Asymmetry, Dark Matter and the Moduli Problem : A Complete Framework

    Full text link
    Recent developments in string theory have led to "realistic" string compactifications which lead to moduli stabilization while generating a hierarchy between the Electroweak and Planck scales at the same time. However, this seems to suggest a rethink of our standard notions of cosmological evolution after the end of inflation and before the beginning of BBN. We argue that within classes of realistic string compactifications, there generically exists a light modulus with a mass comparable to that of the gravitino which generates a large late-time entropy when it decays. Therefore, all known mechanisms of generating the baryon asymmetry of the Universe in the literature have to take this fact into account. In this work, we find that it is still possible to naturally generate the observed baryon asymmetry of the Universe as well as light left-handed neutrino masses from a period of Affleck-Dine(AD) leptogenesis shortly after the end of inflation, in classes of realistic string constructions with a minimal extension of the MSSM below the unification scale (consisting only of right-handed neutrinos) and satisfying certain microscopic criteria described in the text. The consequences are as follows. The lightest left-handed neutrino is required to be virtually massless. The moduli (gravitino) problem can be naturally solved in this framework both within gravity and gauge mediation. The observed upper bound on the relic abundance constrains the moduli-matter and moduli-gravitino couplings since the DM is produced non-thermally within this framework. Finally, although not a definite prediction, the framework naturally allows a light right-handed neutrino and sneutrinos around the electroweak scale which could have important implications for DM as well as the LHC.Comment: 41 pages, no figures, journal version adde

    Dark Radiation and Dark Matter in Large Volume Compactifications

    Full text link
    We argue that dark radiation is naturally generated from the decay of the overall volume modulus in the LARGE volume scenario. We consider both sequestered and non-sequestered cases, and find that the axionic superpartner of the modulus is produced by the modulus decay and it can account for the dark radiation suggested by observations, while the modulus decay through the Giudice-Masiero term gives the dominant contribution to the total decay rate. In the sequestered case, the lightest supersymmetric particles produced by the modulus decay can naturally account for the observed dark matter density. In the non-sequestered case, on the other hand, the supersymmetric particles are not produced by the modulus decay, since the soft masses are of order the heavy gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE

    Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation

    Full text link
    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kahler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction

    SUSY Breaking in Local String/F-Theory Models

    Full text link
    We investigate bulk moduli stabilisation and supersymmetry breaking in local string/F-theory models where the Standard Model is supported on a del Pezzo surface or singularity. Computing the gravity mediated soft terms on the Standard Model brane induced by bulk supersymmetry breaking in the LARGE volume scenario, we explicitly find suppressions by M_s/M_P ~ V^{-1/2} compared to M_{3/2}. This gives rise to several phenomenological scenarios, depending on the strength of perturbative corrections to the effective action and the source of de Sitter lifting, in which the soft terms are suppressed by at least M_P/V^{3/2} and may be as small as M_P/V^2. Since the gravitino mass is of order M_{3/2} ~ M_P/V, for TeV soft terms all these scenarios give a very heavy gravitino (M_{3/2} >= 10^8 GeV) and generically the lightest moduli field is also heavy enough (m >= 10 TeV) to avoid the cosmological moduli problem. For TeV soft terms, these scenarios predict a minimal value of the volume to be V ~ 10^{6-7} in string units, which would give a unification scale of order M_{GUT} ~ M_s V^{1/6} ~ 10^{16} GeV. The strong suppression of gravity mediated soft terms could also possibly allow a scenario of dominant gauge mediation in the visible sector but with a very heavy gravitino M_{3/2} > 1 TeV
    corecore