1,056 research outputs found

    String theory and the KLT-relations between gravity and gauge theory including external matter

    Full text link
    We consider the Kawai-Lewellen-Tye (KLT) factorizations of gravity scalar-leg amplitudes into products of scalar-leg Yang-Mills amplitudes. We check and examine the factorizations at O(1) in α′\alpha' and extend the analysis by considering KLT-mapping in the case of generic effective Lagrangians for Yang-Mills theory and gravity.Comment: 7 pages, ReVTeX4, references updated, changes to text and typos correcte

    Proof of the MHV vertex expansion for all tree amplitudes in N=4 SYM theory

    Full text link
    We prove the MHV vertex expansion for all tree amplitudes of N=4 SYM theory. The proof uses a shift acting on all external momenta, and we show that every N^kMHV tree amplitude falls off as 1/z^k, or faster, for large z under this shift. The MHV vertex expansion allows us to derive compact and efficient generating functions for all N^kMHV tree amplitudes of the theory. We also derive an improved form of the anti-NMHV generating function. The proof leads to a curious set of sum rules for the diagrams of the MHV vertex expansion.Comment: 40 pages, 7 figure

    The No-Triangle Hypothesis for N=8 Supergravity

    Get PDF
    We study the perturbative expansion of N=8 supergravity in four dimensions from the viewpoint of the ``no-triangle'' hypothesis, which states that one-loop graviton amplitudes in N=8 supergravity only contain scalar box integral functions. Our computations constitute a direct proof at six-points and support the no-triangle conjecture for seven-point amplitudes and beyond.Comment: 43page

    Finite driving rate and anisotropy effects in landslide modeling

    Full text link
    In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors is presented.Comment: 8 pages, 9 figure

    A simple approach to counterterms in N=8 supergravity

    Get PDF
    We present a simple systematic method to study candidate counterterms in N=8 supergravity. Complicated details of the counterterm operators are avoided because we work with the on-shell matrix elements they produce. All n-point matrix elements of an independent SUSY invariant operator of the form D^{2k} R^n +... must be local and satisfy SUSY Ward identities. These are strong constraints, and we test directly whether or not matrix elements with these properties can be constructed. If not, then the operator does not have a supersymmetrization, and it is excluded as a potential counterterm. For n>4, we find that R^n, D^2 R^n, D^4 R^n, and D^6 R^n are excluded as counterterms of MHV amplitudes, while only R^n and D^2 R^n are excluded at the NMHV level. As a consequence, for loop order L<7, there are no independent D^{2k}R^n counterterms with n>4. If an operator is not ruled out, our method constructs an explicit superamplitude for its matrix elements. This is done for the 7-loop D^4 R^6 operator at the NMHV level and in other cases. We also initiate the study of counterterms without leading pure-graviton matrix elements, which can occur beyond the MHV level. The landscape of excluded/allowed candidate counterterms is summarized in a colorful chart.Comment: 25 pages, 1 figure, published versio

    Quantum Gravitational Corrections to the Nonrelativistic Scattering Potential of Two Masses

    Get PDF
    We treat general relativity as an effective field theory, obtaining the full nonanalytic component of the scattering matrix potential to one-loop order. The lowest order vertex rules for the resulting effective field theory are presented and the one-loop diagrams which yield the leading nonrelativistic post-Newtonian and quantum corrections to the gravitational scattering amplitude to second order in G are calculated in detail. The Fourier transformed amplitudes yield a nonrelativistic potential and our result is discussed in relation to previous calculations. The definition of a potential is discussed as well and we show how the ambiguity of the potential under coordinate changes is resolved.Comment: 27 pages, 17 figure

    Recursion Relations for One-Loop Gravity Amplitudes

    Get PDF
    We study the application of recursion relations to the calculation of finite one-loop gravity amplitudes. It is shown explicitly that the known four, five, and six graviton one-loop amplitudes for which the external legs have identical outgoing helicities, and the four graviton amplitude with helicities (-,+,+,+) can be derived from simple recursion relations. The latter amplitude is derived by introducing a one-loop three-point vertex of gravitons of positive helicity, which is the counterpart in gravity of the one-loop three-plus vertex in Yang-Mills. We show that new issues arise for the five point amplitude with helicities (-,+,+,+,+), where the application of known methods does not appear to work, and we discuss possible resolutions.Comment: 28 pages, LaTeX, 12 figures. v2:typos and references correcte
    • …
    corecore