1,056 research outputs found
String theory and the KLT-relations between gravity and gauge theory including external matter
We consider the Kawai-Lewellen-Tye (KLT) factorizations of gravity scalar-leg
amplitudes into products of scalar-leg Yang-Mills amplitudes. We check and
examine the factorizations at O(1) in and extend the analysis by
considering KLT-mapping in the case of generic effective Lagrangians for
Yang-Mills theory and gravity.Comment: 7 pages, ReVTeX4, references updated, changes to text and typos
correcte
Proof of the MHV vertex expansion for all tree amplitudes in N=4 SYM theory
We prove the MHV vertex expansion for all tree amplitudes of N=4 SYM theory.
The proof uses a shift acting on all external momenta, and we show that every
N^kMHV tree amplitude falls off as 1/z^k, or faster, for large z under this
shift. The MHV vertex expansion allows us to derive compact and efficient
generating functions for all N^kMHV tree amplitudes of the theory. We also
derive an improved form of the anti-NMHV generating function. The proof leads
to a curious set of sum rules for the diagrams of the MHV vertex expansion.Comment: 40 pages, 7 figure
The No-Triangle Hypothesis for N=8 Supergravity
We study the perturbative expansion of N=8 supergravity in four dimensions
from the viewpoint of the ``no-triangle'' hypothesis, which states that
one-loop graviton amplitudes in N=8 supergravity only contain scalar box
integral functions. Our computations constitute a direct proof at six-points
and support the no-triangle conjecture for seven-point amplitudes and beyond.Comment: 43page
Finite driving rate and anisotropy effects in landslide modeling
In order to characterize landslide frequency-size distributions and
individuate hazard scenarios and their possible precursors, we investigate a
cellular automaton where the effects of a finite driving rate and the
anisotropy are taken into account. The model is able to reproduce observed
features of landslide events, such as power-law distributions, as
experimentally reported. We analyze the key role of the driving rate and show
that, as it is increased, a crossover from power-law to non power-law behaviors
occurs. Finally, a systematic investigation of the model on varying its
anisotropy factors is performed and the full diagram of its dynamical behaviors
is presented.Comment: 8 pages, 9 figure
A simple approach to counterterms in N=8 supergravity
We present a simple systematic method to study candidate counterterms in N=8
supergravity. Complicated details of the counterterm operators are avoided
because we work with the on-shell matrix elements they produce. All n-point
matrix elements of an independent SUSY invariant operator of the form D^{2k}
R^n +... must be local and satisfy SUSY Ward identities. These are strong
constraints, and we test directly whether or not matrix elements with these
properties can be constructed. If not, then the operator does not have a
supersymmetrization, and it is excluded as a potential counterterm. For n>4, we
find that R^n, D^2 R^n, D^4 R^n, and D^6 R^n are excluded as counterterms of
MHV amplitudes, while only R^n and D^2 R^n are excluded at the NMHV level. As a
consequence, for loop order L<7, there are no independent D^{2k}R^n
counterterms with n>4. If an operator is not ruled out, our method constructs
an explicit superamplitude for its matrix elements. This is done for the 7-loop
D^4 R^6 operator at the NMHV level and in other cases. We also initiate the
study of counterterms without leading pure-graviton matrix elements, which can
occur beyond the MHV level. The landscape of excluded/allowed candidate
counterterms is summarized in a colorful chart.Comment: 25 pages, 1 figure, published versio
Quantum Gravitational Corrections to the Nonrelativistic Scattering Potential of Two Masses
We treat general relativity as an effective field theory, obtaining the full
nonanalytic component of the scattering matrix potential to one-loop order. The
lowest order vertex rules for the resulting effective field theory are
presented and the one-loop diagrams which yield the leading nonrelativistic
post-Newtonian and quantum corrections to the gravitational scattering
amplitude to second order in G are calculated in detail. The Fourier
transformed amplitudes yield a nonrelativistic potential and our result is
discussed in relation to previous calculations. The definition of a potential
is discussed as well and we show how the ambiguity of the potential under
coordinate changes is resolved.Comment: 27 pages, 17 figure
Recursion Relations for One-Loop Gravity Amplitudes
We study the application of recursion relations to the calculation of finite
one-loop gravity amplitudes. It is shown explicitly that the known four, five,
and six graviton one-loop amplitudes for which the external legs have identical
outgoing helicities, and the four graviton amplitude with helicities (-,+,+,+)
can be derived from simple recursion relations. The latter amplitude is derived
by introducing a one-loop three-point vertex of gravitons of positive helicity,
which is the counterpart in gravity of the one-loop three-plus vertex in
Yang-Mills. We show that new issues arise for the five point amplitude with
helicities (-,+,+,+,+), where the application of known methods does not appear
to work, and we discuss possible resolutions.Comment: 28 pages, LaTeX, 12 figures. v2:typos and references correcte
- …